Advertisement

Archives of Microbiology

, Volume 124, Issue 2–3, pp 131–136 | Cite as

Nickel requirement for chemolithotrophic growth in hydrogen-oxidizing bacteria

  • Rainer Tabillion
  • Fred Weber
  • Heinrich Kaltwasser
Article

Abstract

In a comparative study the requirement of several strains of autotrophic hydrogen-oxidizing bacteria for nickel was examined. Autotrophic growth was studied both in liquid media, previously freed from trace metals; and on solidified media, using a plate diffusion assay. The latter assay was based on the observation that EDTA causes complete inhibition of autotrophic growth on agar medium as a result of nickel deficiency. Nickel was shown to be required as a trace element in five strains of Alcaligenes eutrophus, in two strains of Xanthobacter autotrophicus, in Pseudomonas flava, in Arthrobacter spec. 11X and in strain 12X. In these bacteria nickel was not replaceable by cobalt, copper, manganese or zinc ions. No significant nickel requirement was detected by these methods, however, for Paracoccus denitrificans and Nocardia opaca 1b.

Key words

Alcaligenes eutrophus Bioassay Chelation technique EDTA Heavy metal requirement Hydrogen bacteria Nickel requirement Plate diffusion assay Trace elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggag, M., Schlegel, H. G.: Studies on a Gram-positive hydrogen bacterium, Nocardia opaca 1b. III. Purification, stability and some properties of the soluble hydrogen dehydrogenase. Arch. Microbiol. 100, 25–39 (1974)Google Scholar
  2. Albert, A.: Selective toxicity. London: Methuen Co. 1960Google Scholar
  3. Bartha, R.: Physiologische Untersuchungen über den chemolithotrophen Stoffwechsel neu isolierter Hydrogenomonas-Stämme. Dissertation, Univ. Göttingen (1961)Google Scholar
  4. Bartha, R.: Physiologische Untersuchungen über den chemolithotrophen Stoffwechsel neu isolierter Hydrogenomonas-Stämme. Arch. Mikrobiol. 41, 313–350 (1962)Google Scholar
  5. Bartha, R., Ordal, E. J.: Nickel-dependent chemolithotrophic growth of two Hydrogenomonas strains J. Bacteriol 89, 1015–1019 (1965)Google Scholar
  6. Baumgarten, J., Reh, M., Schlegel, H. G.: Taxonomic studies on some Gram-positive coryneform hydrogen bacteria. Arch. Microbiol. 100, 207–217 (1974)Google Scholar
  7. Beijerinck, M. W.: L'auxanographie ou la méthode de l'hydrodiffusion dans la gélatine appliquée aux recherches microbiologiques. Arch. Neerl. Sci. Ex. et Nat., Harlem 23, 367–372 (1889)Google Scholar
  8. Chvapil, M.: New aspects in the biological role of zine: A stabilizer of macromolecules and biological membranes. Life Sci. 13, 1041–1049 (1973)Google Scholar
  9. Davis, D. H., Doudoroff, M., Stainer, R. Y., Mandel, M.: Proposal to reject the genus Hydrogenomonas: Taxonomic implications. Int. J. Syst. Bacteriol. 19, 375–390 (1969)Google Scholar
  10. Eberhardt, U.: On chemolithotrophy and hydrogenase of a Grampositive Knallgas bacterium. Arch. Mikrobiol. 66, 91–104 (1969)Google Scholar
  11. Failla, M. L.: Zinc: Functions and transport in microorganisms. In: Microorganisms and minerals (E. D. Weinberg, ed.). New York, Basel: Dekker 1977Google Scholar
  12. Figura, P., McDuffie, B.: Characterization of the calcium form of chelex-100 for trace metal studies. Anal. Chem. 49, 1950–1953 (1977)Google Scholar
  13. Gorbach, G., Koch, O. G.: Über die proteolytische Aktivität von Aspergillus niger und ihre Beeinflussung durch Spurenelemente. II. Der Einfluß der Spurenelemente Zink, Mangan und Eisen. Arch. Mikrobiol. 23, 284–296 (1955)Google Scholar
  14. Gruzinskii, I. V., Gogotov, I. N., Bechina, E. M., Semener, Y. N.: Hydrogenase activity of hydrogen-oxidizing bacteria Alcaligenes eutrophus. Mikrobiologiya 46, 625–631 (1977), (transl.: Microbiology 46, 510–515 (1977)Google Scholar
  15. Hutner, S. H.: Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J. Bacteriol. 52, 213–221 (1946)Google Scholar
  16. Hutner, S. H., Provasoli, L., Schatz, A., Haskins, C. P.: Some approaches to the study of the role of metals in the metabolism of microorganisms. Proc. Amer. Phil. Soc. 94, 152–170 (1950)Google Scholar
  17. Jander, G., Blasius, E.: Lehrbuch der analytischen und präparativen anorganischen Chemie. Stuttgart: Herzel 1973Google Scholar
  18. Kaltwasser, H., Frings, W.: Nickel transport and metabolism by microorganisms In: Nickel in the environment (J. O. Nriagu, ed.). New York: Wiley and Sons 1980 (in press)Google Scholar
  19. Koch, O. G., Koch-Dedic, G. A.: Handbuch der Spurenanalyse. Berlin, Heidelberg, New York: Springer 1974Google Scholar
  20. MacLeod, R. A.: Further mineral requirements of Streptococcus faecalis. J. Bacteriol. 62, 337–345 (1951)Google Scholar
  21. Myers, J., Philipps, J. N., Graham, J.-R.: On the mass culture of algae. Plant. Physiol. 26, 539–548 (1951)Google Scholar
  22. Nicholas, D. J. D.: Microbiological methods for determining magnesium, iron, copper, zinc, mangenase and molybdenum: In: Methods in Enzymology, vol. 3 (S. P. Colowick, N. D. Kaplan, eds.), pp. 1035–1041. New York: Academic Press 1957Google Scholar
  23. Repaske, R., Repaske, A. C.: Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl. Environm. Microbiol. 32, 585–591 (1976)Google Scholar
  24. Schlegel, H. G., Kaltwasser, H., Gottschalk, G.: Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209–222 (1961)Google Scholar
  25. Schmidt, K., Jensen, S. L., Schlegel, H. G.: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch. Mikrobiol. 46, 117–126 (1963)Google Scholar
  26. Siebert, D.: Über propanverwertende, wasserstoffoxidierende Bakterien und die Charakterisierung eines Förderungsfaktors. Dissertation, Univ. Göttingen (1969)Google Scholar
  27. Tabillion, R., Kaltwasser, H.: Energieabhängige 63Ni-Aufnahme bei Alcaligenes eutrophus Stamm H1 and H16. Arch. Microbiol. 113, 145–151 (1977)Google Scholar
  28. Vogt, M.: Wachstumsphysiologische Untersuchungen an Micrococcus denitrificans Beij. Arch. Mikrobiol. 50, 256–281 (1965)Google Scholar
  29. Walker, J. B.: Inorganic micronutrient requirements of Chlorella. I. Requirements for calcium (or strontium), copper and molybdenum. Arch. Biochem. Biophys. 46, 1–11 (1953)Google Scholar
  30. Wiessner, W.: Wachstum und Stoffwechsel von Rhodopseudomonas spheroides in Abhängigkeit von der Versorgung mit Mangan und Eisen. Flora (Jena) 149, 1–42 (1960)Google Scholar
  31. Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., Schlegel, H. G.: Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum, Baumgarten et al. to Xanthobacter gen. nov. Int. J. Syst. Bacteriol. 28, 573–581 (1978)Google Scholar
  32. Wilde, E.: Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch. Mikrobiol. 43, 109–137 (1962)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Rainer Tabillion
    • 1
  • Fred Weber
    • 1
  • Heinrich Kaltwasser
    • 1
  1. 1.Fachrichtung Mikrobiologie der Universität des SaarlandesSaarbrückenFederal Republic of Germany

Personalised recommendations