Psychopharmacology

, Volume 67, Issue 1, pp 31–38 | Cite as

Responses to apomorphine, amphetamine, and neuroleptics in schizophrenic subjects

  • B. Angrist
  • J. Rotrosen
  • S. Gershon
Original Investigations

Abstract

Twenty-one schizophrenic subjects, who had been neuroleptic-free, were tested for responsiveness to dopaminergic agonists: Apomorphine emesis threshold was determined and change in psychopathology after 0.5 mg/kg d-amphetamine orally was rated. The subjects' subsequent response to neuroleptic treatment were also determined. Sensitivity to apomorphine emesis was also determined in a nonschizophrenic control group. Apomorphine emesis threshold was not significantly different in the schizophrenic and control groups. Correlations were done between baseline psychopathology, apomorphine sensitivity, and changes in psychopathology after amphetamine and after neuroleptic treatment. On the Brief Psychiatric Rating Scale (BPRS), baseline psychopathology correlated with improvement after neuroleptics and, on the clinical global impressions (CGI), increase of psychopathology after amphetamine also correlated with improvement after neuroleptic treatment. An inverse correlation was found between several indices of sensitivity to amphetamine (psychopathology change) and emetic sensitivity to apomorphine. An examination of individual subjects' responses to amphetamine and, subsequently, neuroleptics, suggested that in the absence of significant clinical change after amphetamine a brisk therapeutic response to neuroleptics was rare:

Key words

Amphetamine Apomorphine Prediction of neuroleptic response Dopamine Schizophrenia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angrist, B., Lee, H. K., Gershon, S.: The antagonism of amphetamine-induced symptomatology by a neuroleptic. Am. J. Psychiatry 131, 817–819 (1974)Google Scholar
  2. Borison, H. L., Brizzee, K. R.: Morphology of the emetic chemoreceptor trigger zone in cat medulla oblongata. Proc. Soc. Exp. Biol. Med. 77, 38–42 (1951)Google Scholar
  3. Bowers, M. B.: Central dopamine turnover in schizophrenic syndromes. Arch. Gen. Psychiatry 31, 138–146 (1974)Google Scholar
  4. Carlsson, A.: Antipsychotic drugs, neurotransmitters, and schizophrenia. Am. J. Psychiatry 135, 164–173 (1978)Google Scholar
  5. Carlsson, A., Lindqvist, M.: Effect of chlorpromazine or haloperidol on formation of 3-methoxytyramine and normetanephrine in mouse brain. Acta. Pharmacol. Toxicol. (Kbh.) 20, 140–144 (1963)Google Scholar
  6. Clement-Cormier, Y. C., Kebabian, J. W., Petzold, G. L.: Dopamine-sensitive adenylate cyclase in mammalian brain: A possible site of action of antipsychotic drugs. Proc. Natl. Acad. Sci. USA 71, 1113–1117 (1974)Google Scholar
  7. Cools, A., Van Rossum, J. M.: Excitation-mediating and inhibition-mediating dopamine receptors: A new concept toward a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia 45, 243–254 (1976)Google Scholar
  8. Creese, I., Burt, D. R., Snyder, S. H.: Dopamine receptor binding. Differentiation of agonist and antagonist states with H3 dopamine and H3 haloperidol. Life Sci 17, 993–1002 (1975)Google Scholar
  9. Creese, I., Burt, D. R., Snyder, S. H.: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483 (1976)Google Scholar
  10. Garau, L., Govoni, S., Stefanini, E., Trabucchi, M., Spano, P. F.: Dopamine receptors: Pharmacological and anatomical evidences indicate that two distinct dopamine receptor populations are present in rat striatum. Life Sci. 280, 1745–1750 (1978)Google Scholar
  11. Guy, W.: ECDEU Assessment manual for psychopathology. Washington, D.C.: U.S. Department of Health, Education and Welfare (1976)Google Scholar
  12. Hyttel, J.: Effects of neuroleptics on H3 haloperidol and H3 cis (Z) flupenthixol binding and on adenylate cyclase in vitro. Life Sci. 23, 551–556 (1978)Google Scholar
  13. Iversen, L. L.: Dopamine receptors in the brain: A dopamine-sensitive adenylate cyclase models synaptic receptors, illuminating antipsychotic drug action. Science 188, 1084–1089 (1975)Google Scholar
  14. Janowsky, D. S., El-Yousef, K., Davis, J. M., Sekerke, H. J.: Provocation of schizophrenic symptoms by intravenous administration of methylphenidate. Arch. Gen. Psychiatry 28, 185–191 (1973)Google Scholar
  15. Janowsky, D. S., Davis, J. M.: Dopamine, psychomotor stimulants and schizophrenia: Effects of methylphenidate and the stereoisomers of amphetamine in schizophrenics. In: Neuropsychopharmacology of monoamines and their regulatory enzymes, E. Usdin, ed., pp. 75–101. New York: Raven 1974Google Scholar
  16. Jaussen, P. A. J., Niemegcers, C. S. E., Schellekens, K. H. L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data. In: Neuroleptic activity spectra for rats. Arzneim. Forsch. 15, 104–110 (1965)Google Scholar
  17. Johnstone, E. C., Frith, C. D., Crow, T. J., Carney, M. W. P., Price, J. S.: Mechanism of the antipsychotic effect in the treatment of acute schizophrenia. Lancet I, 848–851 (1978)Google Scholar
  18. Kebabian, J. W.: Multiple classes of dopamine receptors in mammalian central nervous system: The involvement of dopamine sensitive adenyl cyclase. Life Sci. 23, 479–483 (1978)Google Scholar
  19. Langer, G., Sachar, E. J., Gruen, P. H., Halpern, F. S.: Human prolactin responses to neuroleptic drugs correlate with antipsychotic potency. Nature 260, 639–640 (1977)Google Scholar
  20. Langer, G., Sacher, E. J., Halpern, F. S.: The prolactin response to neuroleptic drugs, a rest of dopamine blockade: Neuroendocrine studies in normal men. J. Clin. Endocrinol. Metab. 45, 996–1002 (1977)Google Scholar
  21. Matthysse, S.: Antipsychotic drug actions: A clue to pathology of schizophrenia? Fed. Proc. 32, 200–205 (1973)Google Scholar
  22. Meltzer, H. Y., Sachar, E. J., Frantz, A. G.: Serum prolactin in newly admitted psychiatric patients. In: Neuropsychopharmacology of monoamines and their regulatory enzymes, E. Usdin, ed., pp. 229–315. New York: Raven 1974Google Scholar
  23. Post, R. M., Fink, E., Carpenter, W. T., Goodwin, F.: Cerebrospinal amine metabolites in acute schizophrenia. Arch. Gen. Psychiatry 32, 1063–1069 (1975)Google Scholar
  24. van Praag, H. M., Korf, J., Lakke, J. P. W. F., Schut, T.: Dopamine metabolism in depressions, psychoses, and Parkinson's disease: The problem of specificity of biologic variables in behavior disorders. Psychol. Med. 5, 138–146 (1975)Google Scholar
  25. Seeman, P., Tedesco, J. L., Lee, T., Chou-Wong, M., Muller, P., Bowels, J., Whitaker, P. M., McManus, C., Tittler, M., Weinreich, P., Friend, W. C., Brown, G. M.: Dopamine receptors in the central nervous system. Fed. Proc. 37, 130–136 (1978)Google Scholar
  26. Snyder, S. H., Banerjee, S. P., Yamamura, H. I., Greenberg, D.: Drugs, neurotransmitters and schizophrenia. Science 184, 1243–1253 (1974)Google Scholar
  27. Spitzer, R. L., Endicot, J., Robins, E.: Research diagnostic criteria: Rationale and reliability. Arch. Gen. Psychiatry 35, 733–782 (1978)Google Scholar
  28. Stevens, J. R.: An anatomy of schizophrenia? Arch. Gen. Psychiatry 29, 177–189 (1973)Google Scholar
  29. Thierrey, A. M., Blanc, G., Sobel, A., Stinus, L., Glowinski, J.: Dopaminergic terminals in the rat cortex. Science 182, 499–501 (1973)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • B. Angrist
    • 1
  • J. Rotrosen
    • 1
  • S. Gershon
    • 1
  1. 1.Neuropsychopharmacology Research Unit, Department of PsychiatryNew York University Medical CenterNew YorkUSA

Personalised recommendations