, Volume 58, Issue 3, pp 283–288 | Cite as

Influence of catecholamines on dexamphetamine-induced changes in locomotor activity

  • Sheila L. Handley
  • Karin V. Thomas


In the mouse, central noradrenaline receptor stimulation by clonidine, or intracerebroventricular injection of noradrenaline or α-methylnoradrenaline, caused marked enhancement of the locomotor stimulant effects of dexamphetamine in doses that were without effect when given alone. A minimally locomotor-stimulant dose of apomorphine reduced the effect of dexamphetamine. Pimozide and phenoxybenzamine each virtually abolished locomotor stimulation after dexamphetamine, while FLA63 caused significant reduction. Phenoxybenzamine also abolished the enhancement by clonidine. The intensity of the dexamphetamine effect was dose-related, while in the case of apomorphine the duration rather than the intensity was related to the dose administered. Clonidine potentiated apomorphine locomotor stimulation; following this drug combination, the nature of the movements more closely resembled those seen after dexamphetamine. The results suggest the involvement of both noradrenaline and dopamine in the dexamphetamine response.

Key words

Dexamphetamine Locomotor activity Noradrenergic receptor stimulation, FLA63 Apomorphine Clonidine Phenoxybenzamine Pimozide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlenius, A., Engel, J.: Behavioural and biochemical effects of l-Dopa after inhibition of dopamine-β-hydroxylase in reserpine pretreated rats. Naunyn-Schmiedebergs Arch. Pharmakol. 270, 349–360 (1971)Google Scholar
  2. Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970a)Google Scholar
  3. Andén, N.-E., Corrodi H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, C., Svensson, T.: Evldence for a central noradrenaline receptor stimulation by clonidine. Life Sci. 9, 513–523 (1970b)Google Scholar
  4. Andén, N.-E., Strömberg, U., Svensson, T. H.: Dopamine and noradrenaline receptor stimulation. Reversal of reserpine induced suppression of motor activity. Psychopharmacologia (Berl.) 29, 289–298 (1973)Google Scholar
  5. Barbeau, A.: Functions of the striatum. A new proposal based on experience with l-Dopa in extrapyramidal disorders. In: Monoamines noyaux gris centraux et syndrome de parkinson, J. de Ajuriaguerra and G. Gauthier, eds., pp. 385–402 Paris: Masson and Cie 1971Google Scholar
  6. Besson, M. J., Cheramy, A., Glowinsky, J.: Effects of amphetamine and desmethylimipramine on amines synthesis and release in central catecholamine-containing neurons. Eur. J. Pharmacol. 7, 111–114 (1969)Google Scholar
  7. Brittain, R. T., Handley, S. L.: Temperature changes produced by the injection of catecholamines and 5-hydroxytryptamine into the cerebral ventricles of the conscious mouse. J. Physiol. (Lond.) 192, 805–813 (1967)Google Scholar
  8. Carlsson, A.: Amphetamine and brain catecholamines. In: Amphetamine and related compounds. Proceedings of the Mario Negri Institute for Pharmacological Research, Milan, E. Costa and S. Garattini, eds., pp. 289–300. New York: Raven 1970Google Scholar
  9. Carlsson, S. G.: Effects of apomorphine on exploration. Physiol. Behav. 9, 127–129 (1972)Google Scholar
  10. Carlsson, A.: Receptor-mediated control of dopamine metabolism. In: Pre-and post-synaptic receptors, E. Usdin and W. E. Bunney Jr., eds., pp. 49–63 New York: Marcel Dekker 1975Google Scholar
  11. Chan O., Webster R. A.: Importance of noradrenaline found in a functional pool in maintaining spontaneous locomotor activity in rats. Br. J. Pharmacol. 41, 700–708 (1971)Google Scholar
  12. Corrodi, H., Fuxe, K., Ljungdahl, Å., Ögren, S.-O.: Studies on the action of some psychoactive drugs on central noradrenaline neurons after inhibition of dopamine-β-hydroxylase. Brain Res. 24, 451–470 (1970)Google Scholar
  13. Costa, E., Groppetti, A., Naimzada, M. K.: Effects of amphetamine on the turnover of brain catecholamines and motor activity. Br. J. Pharmacol. 44, 742–751 (1972)Google Scholar
  14. Costall, B., Naylor, R. J.: Mesolimbic involvement with behavioural effects indicating antipsychotic activity. Eur. J. Pharmacol. 27, 46–58 (1974)Google Scholar
  15. Creese, I., Iverson, S. O.: The pharmacological and anatomical substrates of the amphetamine response in the rat. Brain Res. 83, 419–436 (1975)Google Scholar
  16. D'Encarnacao, P. S., D'Encarnacao, P., Tapp, J. T.: Potentiation of amphetamine induced psychomotor activity by diethyldiththiocarbamate. Arch. Int. Pharmacodyn. Ther. 182, 186–189 (1969)Google Scholar
  17. Dominic, J. A., Moore, K. E.: Acute effects of α-methyltyrosine on brain catecholamines levels and on spontaneous and amphetamine-stimulated motor activity in mice. Arch. Int. Pharmacodyn. 178, 166–176 (1969)Google Scholar
  18. Ernst, A. M.: Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacologia (Berl.) 10, 316–323 (1967)Google Scholar
  19. Fuxe, K., Ungerstedt, U.: Histochemical, biochemical and functional studies on central monoamine neurons after acute and chronic amphetamine administration. In: Amphetamine and related compounds, E. Costa and S. Garattini, eds., pp. 257–288. New York: Raven 1970Google Scholar
  20. Glowinski, J.: Effects of amphetamine on various aspects of catecholamine metabolism in the central nervous system of the rat. In: Amphetamine and related compounds. E. Costa and S. Garattini, eds., pp. 301–316. New York: Raven 1970Google Scholar
  21. Haley, T. J., McCormick, W. G.: Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br. J. Pharmacol. 12, 12–15 (1957)Google Scholar
  22. Herman, Z. S.: The effects of noradrenaline on rat's behaviour. Psychopharmacologia (Berl.) 16, 369–374 (1970)Google Scholar
  23. Hollister, A. S., Breese, G. R., Cooper, B. R.: Comparison of tyrosine hydroxylase and dopamine-β-hydroxylase inhibition with the effects of various 6-hydroxydopamine treatment on d-amphetamine induced motor activity. Psychopharmacologia (Berl.) 36, 1–16 (1974)Google Scholar
  24. Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillisers) from animal data? Arzneim. Forsch. 15, 104–107 (1965)Google Scholar
  25. Janssen, P. A. J., Niemegeers, C. J. E., Schellekens, K. H. L., Dreesse, A., Lenaerts, F. M., Pinchard, A., Schaper, N. K. A., Nueten, J. M. Van, Verbrugen, F. J.: Pimozide, a chemically novel, highly potent and orally long-acting neuroleptic drug. Arzneim. Forsch. 18, 261–279 (1968)Google Scholar
  26. Javoy, F., Hamon, M., Glowinski, J.: Disposition of newly synthesized amines in cell bodies and terminals of central catecholaminergic neurons. I. Effect of amphetamine and thioproperazine on the metabolism of catecholamines in the caudata nucleus, the substantia negri and the ventromedical nucleus of the hypothalamus. Eur. J. Pharmacol. 10, 178–188 (1970)Google Scholar
  27. Maj, J., Grabowska, M., Gayda, L., Michaluk, J.: Pharmacological action of d-and l-amphetamine. Diss. Pharm. Pharmacol. 24, 7–15 (1972)Google Scholar
  28. Randrup, A., Schell-Krüger, J.: Diethyldithiocarbamate and amphetamine stereotype behaviour. J. Pharm. Pharmacol. 18, 752 (1966)Google Scholar
  29. Rolinski, Z., Scheel-Krüger, J.: The effect of dopamine and noradrenaline antagonists on amphetamine-induced locomotor activity in mice and rats. Acta Pharmacol. Toxicol. 33, 385–399 (1973)Google Scholar
  30. Schlechter, J. M., Butcher, L. L.: Blockade by pimozide of (+) amphetamine induced hypermotility in mice. J. Pharm. Pharmacol. 24, 408–409 (1972)Google Scholar
  31. Segal, D. S., Mandell, A. J.: Behavioural activation of rats during intraventricular infusion of norepinephrine. Proc. Nat. Acad. Sci. 66, 289 (1970)Google Scholar
  32. Svensson, R. H.: The effect of inhibition of catecholamine synthesis on dexamphetamine induced central stimulation. Eur. J. Pharmacol. 12, 161–166 (1970)Google Scholar
  33. Svensson, T. H., Thieme, G.: An investigation of a new instrument to measure motor activity of small animals. Psychopharmacologia (Berl.) 14, 157–163 (1969)Google Scholar
  34. Taylor, K. M., Snyder, S. H.: Differential effects of d-and l-amphetamine on behaviour and on catecholamine disposition on dopamine and noradrenaline containing neurons of rat brain. Brain Res. 28, 295–309 (1971)Google Scholar
  35. Thomas, K. V., Handley, S. L.: Modulation of dexamphetamine-induced compulsive gnawing—including the possible involvement of pre-synaptic alpha-adrenoreceptors. Psychopharmacology 56, 61–67 (1978)Google Scholar
  36. Thornburg, J. E., Moore, K. E.: The relative importance of dopaminergic and noradrenergic neuronal systems for the stimulation of locomotor activity induced by amphetamine and other drugs. Neuropharmacology 12, 853–866 (1973)Google Scholar
  37. Wise, C. O., Stein, L.: Amphetamine: facilitation of behaviour by augmented release of norepinephrine from the medial forebrain bundle. In: Amphetamine and related compounds. E. Costa and S. Garrattini, eds., pp. 463–485. New York: Raven 1970Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Sheila L. Handley
    • 1
  • Karin V. Thomas
    • 1
  1. 1.Pharmacological Laboratories, Department of PharmacyThe University of Aston in BirminghamBirminghamUK

Personalised recommendations