Archives of Microbiology

, Volume 127, Issue 3, pp 245–252 | Cite as

NADH as electron donor for the photosynthetic membrane of Chlamydomonas reinhardii

  • Doris Godde
  • Achim Trebst


A chloroplast fraction from Chlamydomonas reinhardii cells can oxidize NADH in the light, unlike chloroplasts of higher plants. The Chlamydomonas preparation catalyzes electron flow from NADH to methylviologen or ferredoxin to evolve hydrogen (in the presence of a hydrogenase) or take up oxygen. The NADH photooxidation is sensitive to rotenone, dibromothymoquinone and dicyclohexylcarbodiimide. This suggests that a rotenone sensitive NADH dehydrogenase is coupled on the plastoquinone reduction site of the potosynthetic electron flow system. On sonication of the particles NADH photooxidation is lost but may be restored by a protein fraction from an acetone extract plus plastocyanin.

Key words

Chlamydomonas reinhardii Algae chloroplasts Photosynthetic electron transport Hydrogen metabolism NADH photooxidation 







(3,3-dichlorphenyl)-N′·N′ dimethyl urea




dinitro-phenylether of 2-iodo-4-nitrothymol






Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abeles FP (1964) Cell-free hydrogenase from Chlamydomonas. Plant Physiol 39:169–176Google Scholar
  2. Amrhein N, Filner P (1973) Adenosine 3:5 cyclic monophosphate in Chlamydomonas reinhardtii: Isolation and characterisation. Proc Nat Acad Sci USA 70:1099–1103Google Scholar
  3. Ben-Amotz A, Gibbs M (1975) H2 Metabolism in photosynthetic organisms II. Light-dependent H2 evolution by preparations from Chlamydomonas, Scenedesmus and spinach. Biochem Biophys Res Commun 64:355–359Google Scholar
  4. Berzborn RJ, Bishop NI (1973) Isolation and properties of chloroplast particles of Scenedesmus obliquus D 3with high photochemical activities. Biochim Biophys Acta 292:700–714Google Scholar
  5. Bishop NI, Gaffron H (1962) Photoreduction at λ 705 mμ in adapted algae. Biochem Biophys Res Commun 8:471–476Google Scholar
  6. Böhme H, Reimer S, Trebst A (1971) The effect of dibromothymoquinone, an antagonist of plastoquinone, on non cyclic and cyclic electron flow system in isolated chloroplasts. Z Naturforsch 26b:341–352Google Scholar
  7. Curtis VA, Brand JJ, Togasaki RK (1975) Partial reactions of photosynthesis in briefly sonicated Chlamydomonas I. Cell breakage and electron transport activities. Plant Physiol 55:183–186Google Scholar
  8. Davies DR, Plaskitt A (1971) Genetical and structural analyses of cell-wall formation in Chlamydomonas reinhardi. Genet Res Camb 17:33–43Google Scholar
  9. Eisbrenner G, Bothe H (1979) Modes of electron transfer from molecular hydrogen in Anabaena cylindrica. Arch Microbiol 123:37–45Google Scholar
  10. Galante YM, Hatefi Y (1978) Resolution of complex I and isolation of NADH-dehydrogenase an iron-sulfur protein. In: Fleischer S, Packer L (eds) Methods of Enzymology, Vol LIII. Acad Press, New York, pp 15–21Google Scholar
  11. Gaffron H (1940) Carbon dioxide reduction with molecular hydrogen in gren algae. Am J Bot 27:273–283Google Scholar
  12. Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240Google Scholar
  13. Healey FP (1970) Hydrogen evolution by several algae. Planta 91:220–226Google Scholar
  14. Healey FP (1970) a) The mechanism of hydrogen evolution by Chlamydomonas moewusii. Plant Physiol 45:153–159Google Scholar
  15. Jungermann K, Thauer RK, Leimenstoll G, Decker K (1973) Function of reduction pyridine nucleotide-ferredoxin oxidorreductase in saccharolytic Clostridia. Biochim Biophys Acta 305:268–280Google Scholar
  16. Kaltwasser H, Stuart TS, Gaffron H (1969) Light dependent hydrogen evolution by Scenedesmus. Planta 89:309–322Google Scholar
  17. Katoh S (1977) Plastocyanin. In: Trebst A, Avron M (eds) Photosynthesis I, Encyclopedia of Plant Physiology, New Series, Vol. 5 Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. King D, Erbes DL, Ben-Amotz A, Gibbs M (1977) The mechanism of hydrogen photoevolution in photosynthetic organisms. In: Mitsui A, Miyachi S, San Pietro A, Tamura S (eds) Biological Solar Energy Conservation. Acad Press, New York, pp 69–75Google Scholar
  19. Lampe H-H, Drews G (1972) Die Differenzierung des Membransystems von Rhodopseudomonas capsulata hinsichtlich seiner photosynthetischen und respiratorischen Funktionen. Arch Mikrobiol 84:1–19Google Scholar
  20. Levine RP, Gorman DS (1966) Photosynthetic electron transport chain of Chlamydomonas reinhardi. II. Light induced absorbance changes in chloroplast fragments of the wild type and mutant strains. Plant Physiol 41:1293–1300Google Scholar
  21. Lien S, Bannister TT (1971) Multiple sites of DCIP reduction by sonicated oat chloroplasts: Role of plastocyanin. Biochim Biophys Acta 245:465–481Google Scholar
  22. Melandri AB, Zannoni D (1978) Photosynthetic and respiratory electron flow in the dual functional membrane of facultative photosynthetic bacteria. J Bioenerget Biomembr 10:109–138Google Scholar
  23. Nelson N, Drechsler Z, Neumann J (1970) Photophosphorylation in digitonin subchloroplast particles. J Biol Chem 245:143–151Google Scholar
  24. Nührenberg B, Lesemann D, Pirson A (1968) Zur Frage eines anaeroben Wachstums von einzelligen Grünalgen. Planta 79:162–180Google Scholar
  25. Oelze J, Drews G (1972) Membranes of photosynthetic bacteria. Biochim Biophys Acta 265:209–239Google Scholar
  26. Peschek GA (1979) Evidence for two functionally distinct hydrogenases in Anacystis nidulans. Arch Microbiol 123:81–92Google Scholar
  27. Rangan CI, Racker E (1973) Resolution and reconstitution of the mitochondrial electron transport system. J Biol Chem 248:6876–6884Google Scholar
  28. Sane PV, Johanningmeier U, Trebst A (1979) The inhibition of photosynthetic electron flow by DCCD. FEBS Letters 108:136–140Google Scholar
  29. Senger H, Bishop NI (1979) Observation on the photohydrogen producing activity during the synchronous cell cycle of Scenendemus obliquus. Planta 145:53–62Google Scholar
  30. Slater EC (1967) Application of inhibitors and uncouplers for a study of oxidative phosphorylation. In: Estabrook RW, Pullmann ME (eds) Methods of Enzymology, Vol X Acad Press, New York, pp 48–57Google Scholar
  31. Stuart TS, Gaffron H (1971) The kinetics of hydrogen photoproduction by adapted Scenedesmus. Planta 100:228–243Google Scholar
  32. Stuart TS, Kaltwasser H (1970) Photoproduction of hydrogen by photosystem I of Scenedesmus. Planta 91:302–313Google Scholar
  33. Tanner W, Dächsel L, Kandler O (1965) Effects of DCMU and antimycin A on photoassimilation of glucose in Chlorella. Plant Physiol 40:1151–1156Google Scholar
  34. Tanner W, Loos R, Kandler O (1966) Glucose assimilation of Chlorella in monochromatic light of 658 and 711 mμ. In: Thomas JB, Goedheer JC (eds) Currents in photosynthesis. A Donker Publ, Rotterdam, pp 241–243Google Scholar
  35. Trebst A, Reimer S, Dallacker F (1976) Properties of photo eductions by photosystem II. Plant Sci Letters 6:21–24Google Scholar
  36. Trebst A, Harth E, Draber W (1970) On a new inhibitor of photosynthetic electron-transport in isolated chloroplasts. Z Naturforsch 25b:1157–1159Google Scholar
  37. Trebst A, Wietoska H, Draber W, Knops H-J (1978) The inhibiton of photosynthetic electron flow in chloroplasts by the dinitrophenylethers of bromo- or iodo-nitrothymol. Z Naturforsch 33c:919–927Google Scholar
  38. Urbach W, Simonis W (1964) Inhibitor studies on the photophosphorylation in vivo by unicellular algae (Ankistrodesmus) with antimycin A, HOQNO, salicyl aldoxime and DCMU. Biochem Biophys Res Commun 17:39–45Google Scholar
  39. Wiessner W, Gaffron H (1964) Role of photosynthesis in the light induced assimilation of acetate by Chlamydobotrys. Nature (Lond) 201:725–726Google Scholar
  40. Wiessner W (1970) Photometabolism of organic substrates. In: Halldal P (ed) Photobiology of Microorganisms. Wiley-Interscience, London, 95–133Google Scholar
  41. Yannai Y, Epel BL, Neumann J (1976) Photophosphorylation in stable chloroplast fragments from the alga Chlamydomonas reinhardi. Plant Sci Letters 7:295–304Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Doris Godde
    • 1
  • Achim Trebst
    • 1
  1. 1.Lehrsuhl für Biochemie der PflanzenRuhr-Universität BochumBochumFederal Republic of Germany

Personalised recommendations