Advertisement

Meccanica

, Volume 31, Issue 3, pp 309–322 | Cite as

Bifurcations and subharmonic resonances in multi-degree-of-freedom panel models

  • R. Baumgarten
  • E. Kreuzer
Article

Abstract

This paper describes the nonlinear, postcritical behavior of parametrically excited, shallow, cylindrical panels, which are modeled with two or four degrees of freedom. The analysis shows complicated dynamic behavior. Stable, periodic motions coexist with the trivial solution for very small values of the excitation amplitude. Moreover, a stable, chaotic attractor could be found coexisting with the trivial solution.

Key words

Structural dynamics Local bifurcation analysis Dynamics of shells Bifurcation and chaos 

Sommario

Si studia il comportamento postcritico nonlineare di pannelli cilindrici ribassati, soggetti ad eccitazione parametrica e modellati con due o quattro gradi di libertà. L'analisi evidenzia un comportamento dinamico complesso. Moti periodici stabili coesistono con la soluzione banale per valori molto piccoli dell'ampiezza dell'eccitazione. Un attrattore caotico stabile coesiste altresì con tale soluzione per alcuni valori della frequenza dell'eccitazione.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    AllgowerE.L. and GeorgK., Numerical Continuation Methods, Springer-Verlag, Berlin, 1990.Google Scholar
  2. 2.
    AtluriS., ‘A perturbation analysis of non-linear free flexural vibrations of a circular cylindrical shell’, Int. J. of Solids & Structures, 8 (1972) 549–569.Google Scholar
  3. 3.
    BogdanovichA., Nonlinear Dynamic Problems for Composite Cylindrical Shells, Elsevier, Barking, England, 1991.Google Scholar
  4. 4.
    EllerC., ‘Finite-element procedures for the stability analysis of nonlinear, parametric excited shell structures’, Int. J. of Computers & Structures, 35(3) (1990) 259–265.Google Scholar
  5. 5.
    GrundmannH., ‘Zur dynamischen Stabilität des schwach gekrümmten zylindrischen Schalenfeldes’, Ingenieur-Archiv, 39 (1970) 261–272.Google Scholar
  6. 6.
    KisliakovS.D. and PopovD.D., ‘Lyapunov exponents and a strange attractor for the damped nonlinear Mathieu equation’, Archive of Applied Mechanics, 61 (1991) 49–56.Google Scholar
  7. 7.
    RadwanH.R. and GeninJ., ‘Dynamic instability in cylindrical shells’, Journal of Sound and Vibration, 56(3) (1978) 373–382.Google Scholar
  8. 8.
    SeydelR., From Equilibrium to Chaos, Elsevier, New York, 1988.Google Scholar
  9. 9.
    TimoshenkoS., Theory of Plates and Shells, McGrawHill, New York, 1959.Google Scholar
  10. 10.
    TimoshenkoS., Theory of Elastic Stability, McGraw-Hill, New York, 1961.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • R. Baumgarten
    • 1
  • E. Kreuzer
    • 1
  1. 1.Ocean Engineering Section IITechnical University Hamburg-HarburgHamburgGermany

Personalised recommendations