Skip to main content
Log in

Three-dimensional shapes of looped DNA

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The equilibrium shapes of a closed DNA are investigated by employing a model of a thin, homogeneous, isotropic, linearly elastic rod of circular cross section. An equilibrium configuration of such an initially straight and twisted rod, submitted to external forces and moments at its ends only, obeys equations identical to those governing the rotation of a symmetric gyrostat spinning about a fixed point in a gravitational field (the Kirchhoff analogy). To represent the equilibrium of the looped DNA, the model rod must be smoothly closed into a ring. The corresponding BVP results in a system of four nonlinear equations with respect to four parameters. The perturbation analysis and the parameter continuation approach are used to find nonplanar solutions. The conformation change is discussed for various values of parameters.

Sommario

Si analizzano le configurazioni di equilibrio di una molecola chiusa di DNA per mezzo di un modello di trave sottile, omogenea, isotropa e linearmente elastica, con sezione circolare. La configurazione di equilibrio di una tale trave, inizialmente rettilinea e poi ritorta, soggetta a forze esterne e momenti solo alle sue estremità, è descritta dalla soluzione di equazioni identiche a quelle che governano il moto di un girostato simmetrico in rotazione intorno ad un punto fisso in un campo gravitazionale (l'analogie di Kirchhoff). Per poter rappresentare l'equilibrio del cappio di DNA, il modello di trave deve essere racchiuso in un anello, Il corrispondente problema al contorno consiste in un sistema di quattro equazioni nonlineari rispetto a quattro parametri. Le soluzioni del problema fuori del piano vengono ottenute tramite l'analisi perturbativa ed una procedura di continuazione al variare di un parametro. Si discutono le modifiche di configurazione del sistema per diversi valori dei parametri.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CrickF. H. C., ‘Linking numbers and nucleosomes’, Proc. Natl. Acad. Sci. USA, 73 (8) (1976) 2639–2643.

    Google Scholar 

  2. TsuruH. and WadatiM., ‘Elastic model of highly supercoiled DNA’, Biopolymers, 25 (1986) 2083–2096.

    Google Scholar 

  3. BauerW. R., CrickF. H. C., WhiteJ. H., ‘Supercoiled DNA’, Scientific American, 243 (1) July (1980) 100–113.

    Google Scholar 

  4. BenhamC. J., ‘Elastic model of supercoiling’, Proc. Natl. Acad. Sci. USA, 74 (1977) 2397–2401.

    Google Scholar 

  5. LeBretM., ‘Catastrophic variation of twist and writhing of circular DNAs with constraint?’, Biopolymers, 18 (1979) 1709–1725.

    Google Scholar 

  6. BenhamC. J., ‘Geometry and mechanics of DNA superhelicity’, Biopolymers, 22 (1983) 2477–2495.

    Google Scholar 

  7. ŠelepováP., KyprJ., ‘Computer simulation of DNA supercoiling in a simple elastomechanical approximation’, Biopolymers, 24 (1985) 867–882.

    Google Scholar 

  8. WadatiM. and TsuruH., ‘Elastic model of looped DNA’, Physica 21D (1986) 213–216.

    Google Scholar 

  9. TanakaF. and TakahashiH., ‘Elastic theory of supercoiled DNA’, J. Chem. Phys. 83 (11) (1985) 6017–6026.

    Google Scholar 

  10. StarostinE. L., ‘Three-dimensional conformations of looped DNA in an elastomechanical approximation’. In: ChienWei-zang (ed.), Proceedings of the 2nd International Conference on Nonlinear Mechanics, Peking University Press, Beijing, 1993, pp. 188–190.

    Google Scholar 

  11. Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity (4th edn), Cambridge University Press, 1927.

  12. TsuruH., ‘Nonlinear dynamics for thin elastic rod’, J. Phys. Soc. Japan, 55 (7) (1986) 2177–2182.

    Google Scholar 

  13. TsuruH., ‘Equilibrium shapes and vibrations of thin elastic rod’, J. Phys. Soc. Japan, 56 (7) (1987) 2309–2324.

    Google Scholar 

  14. Domokos, G., A Group-Theoretic Approach to the Geometry of Elastic Rings, Technical Note BN-1168, Institute for Physical Science and Technology, University of Maryland, 1994.

  15. CantorC. R., SchimmelP. R., Biophysical Chemistry. Part III. The Behavior of Biological Macromolecules, W. H. Freeman and Company, San Francisco, 1980.

    Google Scholar 

  16. FullerF. B., ‘The writhing number of a space curve’ Proc. Natl. Acad. Sci. USA, 68 (4) (1971) 815–819.

    Google Scholar 

  17. BarkleyM. D., ZimmB. H., J. Chem. Phys. 70 (1979) 2992–3007.

    Google Scholar 

  18. HoganM., LeGrangeJ. and AustinB., ‘Dependence of DNA helix flexibility on base composition’, Nature, 304 (25) (1983) 752–754.

    Google Scholar 

  19. LandauL. D. and LifshitzE. M., Theory of Elasticity (2nd edn), Pergamon, New York, Oxford, 1970.

    Google Scholar 

  20. IlyukhinA. A., Spatial Problems of the Nonlinear Theory of Elastic Rods, Naukova Dumka, Kiev, 1979 [in Russian].

    Google Scholar 

  21. AbramowitzM. and StegunI. A., Handbook of Mathematical Functions, Dover, New York, 1972.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Starostin, E.L. Three-dimensional shapes of looped DNA. Meccanica 31, 235–271 (1996). https://doi.org/10.1007/BF00426990

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00426990

Key words

Navigation