, Volume 31, Issue 6, pp 611–621 | Cite as

Flow and field induced instabilities in a smectic C liquid crystal

  • George I. Blake
  • Frank M. Leslie


This paper discusses the possibility of flow induced instabilities occurring in smectic C liquid crystals by examining appropriate solutions of a recently proposed continuum theory for such materials. These preliminary calculations suggest that results rather similar to those obtained for nematics some twenty years ago are equally likely in smectics.

Mathematics Subject Classification

continuum mechanics 

Key words

Smectic C liquid crystal Continuum theory for smectics Flow instabilities Thermomechanics of continua 


La possibilitá di instabilità indotte da flusso in cristalli liquidi smettici C viene discussa esaminando appropriate soluzioni di una teoria del continuo recentemente proposta per tali materiali. Questi calcoli preliminari suggeriscono che risultati abbastanza simili a quelli ottenuti per i nematici circa venti anni fa possono essere validi anche per gli smettici.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dubois-VioletteE., GuyonE., JanossyI., PieranskiP. and MannevilleP., ‘Theory and experiments on plane shear flow instabilities in nematics’, J. Mécanique, 16 (1977), 733–767.Google Scholar
  2. 2.
    MannevilleP. and Dubois-VioletteE., ‘Shear flow instability in nematic liquids: theory steady simple shear flows’, J. Physique, 37 (1976) 285–296.Google Scholar
  3. 3.
    LeslieF.M., ‘An analysis of a flow instability in nematic liquid crystals’, J. Phys. D: Appl. Phys., 9 (1976) 925–937.Google Scholar
  4. 4.
    MannevilleP. and Dubois-VioletteE., ‘Steady Poiseuille flow in nematics: theory of the ‘uniform’ instability’, J. Physique, 37 (1976), 1115–1124.Google Scholar
  5. 5.
    ZúñigaI. and LeslieF.M., ‘Orientational instabilities in plane Poiseuille flow of certain nematic liquid crystals’, J. Non-Newtonian Fluid Mech., 33 (1989) 123–136.Google Scholar
  6. 6.
    ClarkM.G., SaundersF.C., ShanksI.A. and LeslieF.M., ‘A study of flow alignment instability during rectilinear oscillatory shear of nematics’, Mol. Cryst. Liq. Cryst., 70 (1981) 195–222.Google Scholar
  7. 7.
    HoganS.J., MullinT. and WoodfordP., ‘Rectilinear low-frequency shear of homogeneously aligned nematic liquid crystals’, Proc. Roy. Soc. Lond. A, 441 (1993) 559–573.Google Scholar
  8. 8.
    LeslieF.M., StewartI.W. and NakagawaM., ‘A continuum theory for smectic C liquid crystals’, Mol. Cryst. Liq. Cryst., 198 (1991) 443–454.Google Scholar
  9. 9.
    LeslieF.M., ‘Some flow effects in continuum theory for smectic liquid crystals’, Liq. Cryst., 14 (1993) 121–130.Google Scholar
  10. 10.
    DeGennesP.G. and ProstJ., The Physics of Liquid Crystals (Second Edition), Clarendon Press, Oxford, 1993.Google Scholar
  11. 11.
    OseenC.W., ‘The theory of liquid crystals’, Trans. Faraday Soc., 29 (1933) 883–899.Google Scholar
  12. 12.
    EricksenJ.L. ‘Inequalities in liquid crystal theory’, Phys. of Fluids, 9 (1966) 1205–1207.Google Scholar
  13. 13.
    PieranskiP. and GuyonE., ‘Shear-flow-induced transition in nematics’, Solid State Comm., 13 (1973) 435–437.Google Scholar
  14. 14.
    LeslieF.M., StewartI.W., CarlssonT. and NakagawaM., ‘Equivalent smectic C liquid crystal energies’, Continuum Mech. Thermodyn., 3 (1991) 237–250.Google Scholar
  15. 15.
    KramerL. and PeschW., ‘Convection instabilities in nematic liquid crystals’, Annu. Rev. Fluid Mech., 27 (1995) 515–541.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • George I. Blake
    • 1
  • Frank M. Leslie
    • 1
  1. 1.Department of MathematicsUniversity of StrathclydeGlasgowScotland

Personalised recommendations