Advertisement

Psychopharmacology

, Volume 61, Issue 2, pp 155–159 | Cite as

The effect of the combination of lithium and haloperidol on brain intermediary metabolism in vivo

  • Robert W. Guynn
  • Louis A. Faillace
Original Investigations

Abstract

The effect of the chronic administration of the combination of lithium and haloperidol has been studied in rat brain in vivo. Lithium was administered in food in amounts sufficient to maintain serum lithium levels of 1.0±0.1 mEq/l; haloperidol (1.5 mg/kg) was given i.p. once daily. Control animals pair-fed with the lithium/haloperidol group received either lithium alone, haloperidol alone, or neither drug. Fifteen days after the beginning of the experiments the brains were instantaneously frozen with a rapid brain-freezing device and multiple metabolites were measured in the perchloric acid extract of the tissue. Intermediates examined included selected metabolites of the glycolytic pathway and the tricarboxylic acid cycle, N-acetylaspartate and cofactors such as ATP, CoA, and acetyl-CoA. Estimates of the effects of the treatments on cytoplasmic and mitochondrial redox states were also made. The results showed only minor effects of any of the treatments on any of the parameters studied and little or nothing to distinguish the combination of lithium and haloperidol from either treatment alone.

Key words

Lithium Haloperidol Rat brain Intermediary metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrecht, W.: Erhöhung der Glykogenkonzentration im Gehirn und das Verhalten verschiedener Fermente in Gehirn und Darm der Maus nach Reserpin (Serpasil), Klin. Wochenschr. 35, 588–590 (1957)Google Scholar
  2. Allred, J. B., Guy D. G.: Determination of coenzyme A and acetyl CoA in tissue extracts. Anal. Biochem. 29, 293–299 (1969)Google Scholar
  3. Baastrup, P. C., Hollnagel, P., Sorensen, R., Schou, M.: Adverse reactions in treatment with lithium carbonate and haloperidol. J. Am. Med. Assoc. 236, 2645–2646 (1976)Google Scholar
  4. Balan, G., Cernatescu, C., Trandafirescu, M., Ababei, L.: The influence of lithium ions on the activity of hexokinase and pyruvate kinase. In: Abstracts, 7th Congress CINP, Prague. 1, 19 (1970)Google Scholar
  5. Baldessarini, R. J., Lipinski, J. F.: Lithium salts: 1970–1975. Ann. Intern. Med. 83, 527–533 (1975)Google Scholar
  6. Brunner, E. A., Passonneau, J. V., Molstad, C.: The effect of volatile anaesthetics on levels of metabolites and on metabolic rate in brain. J. Neurochem. 18, 2301–2316 (1971)Google Scholar
  7. Cohen, W. J., Cohen, N. H.: Lithium carbonate, haloperidol, and irreversible brain damage. J. Am. med. Assoc. 230, 1283–1287 (1974)Google Scholar
  8. Cohen, I. M., Bunney, W. E., Jr., Cole, J. O., Fieve R. R., Gershon S., Prien R. F.: The current status of lithium therapy: report of the APA task force. Am. J. Psychiatry 132, 997–1001 (1975)Google Scholar
  9. Estler C. J.: Glykogengehalt des Gehirns und Körpertemperatur weißer Mäuse unter dem Einfluß einiger zentral dämpfender und errgender Pharmaka. Med. Exp. (Basel) 4, 209–213 (1961)Google Scholar
  10. Estler, C. J., Heim, F.: Der Gehalt des Gehirns weißer Mäuse an Adeninnucleotiden, Kreatinphosphat, Coenzym A, Glykogen und Milchsäure in Ätherexcitation und-narkose. Med. Exp. (Basel) 3, 241–248 (1960)Google Scholar
  11. Fleming, M. C., Lowry, O. H.: The measurement of free and N-acetylated aspartic acid in the nervous system. J. Neurochem. 13, 779–783 (1966)Google Scholar
  12. Folbergrova, J., Passonneau, J. V., Lowry O. H., Schultz, D. W.: Glycogen, ammonia and related metabolites in the brain during seizures evoked by methionine sulphoximine. J. Neurochem. 16, 191–203 (1969)Google Scholar
  13. Forn, J., Valdecasa, F. G.: Effects of lithium on brain adenyl cyclase activity. Biochem. Pharmacol. 20, 2773–2779 (1971)Google Scholar
  14. Goldberg, N. D., Passonneau, J. V., Lowry, O. H.: Effects of changes in brain metabolism on the levels of citric acid cycle intermediates. J. Biol. Chem. 241, 3997–4003 (1966)Google Scholar
  15. Guynn, R. W., Veloso, D., Veech, R. L.: Enzymic determination of inorganic phosphate in the presence of creatine phosphate. Anal. Biochem. 45, 277–285 (1972)Google Scholar
  16. Guynn, R. W., Veloso, D., Lawson, J. W. R., Veech, R. L.: The concentration and control of cytoplasmic free inorganic pyrophosphate in rat liver in vivo. Biochem. J. 140, 369–375 (1974)Google Scholar
  17. Hohorst, H. J., Kreutz, F. H., Bücher, T.: Über Metabolitgehalte und Metabolikonzentrationen in der Leber der Ratte. Biochem. Z. 332, 18–46 (1959)Google Scholar
  18. Horn, R. S., Walaas, O., Walaas, E.: The influence of sodium, potassium and lithium on the response of glycogen synthetase I to insulin and epinephrine in isolated rat diaphragm. Biochem. Biophys. Acta 313, 296–309 (1973)Google Scholar
  19. Howse, D. C., Duffy, T. E.: Control of the redox state of the pyridine nucleotides in the rat cerebral cortex. Effect of electroshock induced seizures. J. Neurochem. 24,935–940 (1975)Google Scholar
  20. Kachmar, J. F., Boyer, P. D.: Kinetic analysis of enzyme reactions, the potassium activation and calcium inhibition of pyruvic phosphoferase. J. Biol. Chem. 200, 669–682 (1953)Google Scholar
  21. Keppler, D., Decker, K.: Glycogen. In: Methods of enzymatic analysis, H. U. Bergmeyer, ed., pp. 1127–1131. New York: Academic Press 1974Google Scholar
  22. King, L. J., Carl, J. L., Archer, E. G., Castellanet, M.: Effects of lithium on brain energy reserves and cations in vivo. J. Pharmacol. Exp. Ther. 168, 163–170 (1969)Google Scholar
  23. Kohn, P. G., Clausen, T.: The relationship between the transport of glucose and cations across cell membranes in isolated tissues. VII The effects of extracellular Na#x002B; and K#x002B; on the transport of 3-O-methylglucose and glucose in rat soleus muscle. Biochim. Biophys. Acta 225, 798–814 (1972)Google Scholar
  24. Lamprecht, W., Stein, P.: Creatine phosphate. In: Methods of enzymatic analysis, H. U. Bergmeyer, ed., pp. 610–616. New York: Academic Press 1965Google Scholar
  25. Lowry, O. H., Passonneau, J. V.: A flexible system of enzymatic analysis, pp. 124–125. New York: Academic Press 1972aGoogle Scholar
  26. Lowry, O. H., Passonneau, J. V.: A flexible system of enzymatic analysis, pp. 146–218. New York: Academic Press 1972bGoogle Scholar
  27. Marhold, J., Zimanová, J., Lachman, M., Král, J., Vojtêchovský, M.: To the incompatibility of haloperidol with lithium salts. Act. Nerv. Super. 16, 199–200 (1974)Google Scholar
  28. Mellerup, R. T., Plenge, P., Rafaelsen, O. J.: Lithium effects on carbohydrate and electrolyte metabolism. In: Psychopharmacology, sexual disorders and drug abuse, T. A. Ban, J. R. Boissier, G. J. Gessa, H. Heimann, L. Hollister, H. E. Lehmann, I. Munkvad, H. Steinberg, F. Sulser, A. Sundwall, O. Vinar, eds., pp. 319–322. London: North Holland Publishing Co. 1976Google Scholar
  29. Merrill, D. K., Guynn, R. W.: Electroconvulsive seizure: an investigation into the validity of calculating the cytoplasmic free [NAD#x002B;/[NADH] [H#x002B;] ratio from substrate concentrations of brain. J. Neurochem. 27, 459–464 (1976)Google Scholar
  30. Organisciak, D. T., Klingman, J. D.: The effects of lithium on high energy phosphate and glucose levels in the rat superior cervical ganglion. J. Neurochem. 22, 341–345 (1974)Google Scholar
  31. Palladin, A. W.: Der Stoffwechsel im Gehirn bei verschiedenem funktionellem Zustand. Wien. Klin. Wochenschr 66, 473–477 (1954)Google Scholar
  32. Plenge, P., Mellerup, E. T., Rafaelsen, O. J.: Lithium action on glycogen synthesis in rat brain, liver, and diaphragm. J. Psychiatr Res. 8, 29–36 (1970)Google Scholar
  33. Pfleiderer, G.: l-Aspartic acid and l-asparagine. In: Methods of enzymatic analysis, H. U. Bergmeyer, ed., pp. 381–383. New York: Academic Press 1965Google Scholar
  34. Strominger, J. L., Maxwell, E. S., Kalckar, A. M.: Determination of UDPG and UTP by means of UDPG dehydrogenase. Methods Enzymol 3, 974–976 (1957)Google Scholar
  35. Van der Velde, C. D., Gordon, M. W.: Manic-depressive illness, diabetes mellitus, and lithium carbonate. Arch. Gen. Psychiatry 21, 478–485 (1969)Google Scholar
  36. Veech, R. L., Eggleston, L. V., Krebs, H. A.: The redox state of free nicotinamide-adenine dinucleotide phosphate in the cytoplasm of rat liver. Biochem. J., 115, 609–619 (1970)Google Scholar
  37. Veech, R. L., Guynn, R., Veloso, D.: The time-course of the effects of ethanol on the redox and phosphorylation states of rat liver. Biochem. J. 127, 387–397 (1972)Google Scholar
  38. Veech, R. L., Harris, R. L., Veloso, D., Veech, E. H.: Freeze-blowing: a new technique for the study of brain in vivo. J. Neurochem. 20, 183–188 (1973)Google Scholar
  39. Veloso, D., Passonneau, J. V., Veech, R. L.: The effects of intoxicating doses of ethanol upon intermediary metabolism in rat brain. J. Neurochem. 19, 2679–2686 (1972)Google Scholar
  40. Watanabe, H., Passonneau, J. V.: Factors affecting the turnover of cerebral glycogen and limit dextrin in vivo. J. Neurochem. 20, 1543–1554 (1973)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Robert W. Guynn
    • 1
    • 2
  • Louis A. Faillace
    • 1
  1. 1.Department of PsychiatryThe University of Texas Medical School, Health Science CenterHoustonUSA
  2. 2.Graduate School of Biomedical SciencesThe University of Texas Health Science CenterHoustonUSA

Personalised recommendations