, Volume 61, Issue 2, pp 107–124 | Cite as

Effect of inescapable shock on subsequent escape performance: Catecholaminergic and cholinergic mediation of response initiation and maintenance

  • Hymie Anisman
  • Gary Remington
  • Lawrence S. Sklar
Original Investigations


Following exposure to inescapable shock, subsequent escape performance is disrupted if the task is one in which animals receive forced exposure to shock for several seconds before escape is possible. The extent of the deficit is directly related to the severity of the initial stress and the duration of escape delay used during test. Treatment with a tyrosine hydroxylase inhibitor, α-methyl-p-tyrosine (α-MpT), a dopamine-β-hydroxylase inhibitor, FLA-63, or dopamine antagonists, haloperidol, and pimozide, mimicked the effects of inescapable shock in the different escape paradigms. The effects of haloperidol were antagonized by treatment with scopolamine. As observed in the case of inescapable shock, prior escape training abated the disruptive effects of the drug treatments. Finally, decreasing or blocking catecholamine activity or increasing cholinergic activity exacerbated the effect of a moderate amount of inescapable shock on subsequent escape performance. These treatments also induced reductions in shock-elicited activity. Conversely, treatment with a catecholamine stimulant, l-dopa, or a cholinergic blocker, scopolamine, anatagonized the reduction in shock-elicited activity and the escape deficits engendered by prior inescapable shock. It was hypothesized that both DA and NE, as well as ACh, are involved in the escape deficit observed after inescapable shock, and that these transmitters mediate the interference by their influence on response initiation and maintenance, rather than on associative or cognitive processes.

Key words

Inescapable shock Helplessness Catecholamines Acetylcholine Escape performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anisman, H.: Time dependent variations in aversively motivated behaviors: nonassociative effects of cholinergic and catecholaminergic activity. Psychol. Rev. 82, 359–385 (1975)Google Scholar
  2. Anisman, H.: Effects of inescapable shock on subsequent escape performance: role of cholinergic and catecholaminergic mechanisms. Paper presented at the 38th meeting of the Canadian Psychological Association, Vancouver, June 1977Google Scholar
  3. Anisman, H.: Neurochemical changes elicited by stress: behavioral correlates. In: Psychopharmacology of aversively motivated behavior H. Anisman and G. Bignami, eds., pp. 119–171. New York: Plenum 1978Google Scholar
  4. Anisman, H., Sklar, L. S.: Escape deficits following exposure to inescapable shock: dopaminergic and noradrenergic involvement. Soc. Neurosci. (Abs.), vol. 3. Nov. 1978Google Scholar
  5. Anisman, H., deCatanzaro, D., Remington, G.: Effect of inescapable shock on subsequent escape performance: nonassociative changes due to shock severity and test interval. J. Exp. Psychol. [Anim. Behav. Proc.] 4, 197–218 (1978)Google Scholar
  6. Aprison, M. H., Hingtgen, J. N.: Evidence of a central cholinergic mechanism functioning during drug-induced excitation in avoidance behavior. In: Drugs and cholinergic mechanisms in C.N.S.E. Heilbronn and A. Winter, eds. Stockholm: Forsvarets Forskningsanstalt 1970Google Scholar
  7. Aprison, M. H., Hingtgen, J. N., McBride, W. J.: Serotonergic and cholinergic mechanisms during disruption of approach and avoidance behavior. Fed. Proc. 34, 1813–1822 (1975)Google Scholar
  8. Arnfred, T., Randrup, A.: Cholinergic mechanisms in brain inhibiting amphetamine-induced stereotyped behaviur. Acta Pharmacol. Toxicol. 26, 384–394 (1968)Google Scholar
  9. Bignami, G.: Effects of neuroleptics, ethanol, hypnotic sedatives, transquilizers, narcotics, and minor stimulants in aversive paradigms. In: Psychopharmacology of aversively motivated behavior, H. Anisman and G. Bignami, eds., pp. 385–451. New York: Plenum 1978Google Scholar
  10. Bignami, G., Michalek, H.: Cholinergic mechanisms in aversively motivated behavior. In: Psychopharmacology of aversively motivated behavior, H. Anisman and G. Bignami, eds., pp. 173–255. New York: Plenum 1978Google Scholar
  11. Bracewell, R. J., Black, A. H.: The effects of restraint and noncontigent preshock on subsequent escape learning in the rat. Learn. Motiv. 5, 53–69 (1974)Google Scholar
  12. Carlton, P. L.: Cholinergic mechanisms in the control of behavior. Psychol. Rev. 70, 19–39 (1963)Google Scholar
  13. Fibiger, H. C., Zis, A. P., Phillips, A. G.: Haloperidol-induced disruption of conditioned avoidance responding: Attenuation by prior training or by anticholinergic drugs. Eur. J. Pharmacol. 30, 309–314 (1975)Google Scholar
  14. Fouriezos, G., Wise, R. A.: Pimozide-induced extinction of intracranial self-stimulation: response patterns rule out motor or performance deficits. Brain Res. 103, 377–380 (1976)Google Scholar
  15. Gaddy, J. R., Neill, D. B.: Differential behavioral changes following intrastriatal application of 6-hydroxydopamine. Brain Res. 119 439–446 (1977)Google Scholar
  16. Glazer, H. I., Weiss, J. M., Pohorecky, L. A., Miller, N.: Monoamines as mediators of avoidance-escape behavior. Psychosom. Med. 37, 535–543 (1975)Google Scholar
  17. Glazer, H. I., Weiss, J. M.: Long-term and transitory interference effects. J. Exp. Psychol. [Anim. Behav. Proc.] 2, 191–201 (1976a)Google Scholar
  18. Glazer, H. I., Weiss, J. M.: Long-term interference effect: an alternative to “learned helplessnes.” J. Exp. Psychol. [Anim. Behav. Proc.] 2, 202–213 (1976b)Google Scholar
  19. Hingtgen, J. N., Smith, J. E., Shea, P. A., Aprison, M. H., Gaff, T. M.: Cholinergic changes during conditioned suppression in rats. Science 193, 193–195 (1976)Google Scholar
  20. Janowski, D. S., Davis, J. M., El-Yousef, M. K. Sekerke, H. J.: A cholinergic-adrenergic hypothesis of manic and depressions. Lancet 1972 II, 632–635Google Scholar
  21. Karezmar, A. G., Scudder, C. L., Richardson, D. L.: Interdisciplinary approach to the study of behavior in related mice types. In: Chemical approaches to brain function, S. Ehrenpreis and I. J. Kopin, eds. New York: Academic Press 1973Google Scholar
  22. Keim, K. L., Sigg, E. B.: Physiological and biochemical concomitants of restraint stress in rats. Pharmacol. Biochem. Behav. 4, 289–297 (1976)Google Scholar
  23. Kokkinidis, L., Anisman, H.: Interaction between cholinkergic and catecholaminergic agents in a spontaneous alternation task. Psychopharmacology (Berl.) 48, 261–276 (1976)Google Scholar
  24. Kvetnansky, R., Mitro, A., Palkovits, M., Brownstein, M., Torda, T., Vigas, M., Mikulaj, L.: Catecholamines in individual hypothalamic nuclei in stressed rats. In: Catecholamines and stress, E. Usdin, R. Kvetnansky, and I. J. Kopin, eds., pp. 39–50. Oxford: Pergamon 1976Google Scholar
  25. Laverty, R., Taylor, K. M.: The fluorometric assay for catecholamines and related compounds: improvements and extensions of the hydroxyindole technique. Anal. Biochem. 22, 269–279 (1968)Google Scholar
  26. Lorens, S. A., Guldberg, H. C., Hole, K., Köhler, C., Srebro, B.: Activity avoidance learning and regional 5-hydroxytryptamine following intrabrain stem 5,7-dihydroxytryptamine and electrolytic midbrain raphe lesions in the rat. Brain Res. 108, 97–113 (1976)Google Scholar
  27. Maickel, R. P., Cox, R. H., Saillant, J., Miller, F. P.: A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int. J. Neuropharmacol. 7, 275–281 (1968)Google Scholar
  28. Maier, S. F., Seligman, M. E. P.: Leamed helplessness: theory and evidence. J. Exp. Psychol. Gen. 105, 3–46 (1976)Google Scholar
  29. Maier, S. F., Testa, T. J.: Fallure to learn to escape by rats previously exposed to inescapable shock is partly produced by associative interference. J. Comp. Physiol. Psychol. 88, 554–564 (1975)Google Scholar
  30. Peters, D. A. V., Anisman, H., Pappas, B. A.: Mohoamines and aversively motivated behaviors. In: Psychopharmacology of aversively motivated behaviors, H. Anisman and G. Bignami, eds., pp. 257–343. New York: Plenum 1978Google Scholar
  31. Seligman, M. E. P., Maier, S. F., Solomon, R. L.: Unpredictable and uncontrollable aversive events. In: Aversive conditioning and learning, F. R. Brush, ed., pp. 347–400. New York: Academic Press 1971Google Scholar
  32. Setler, P., Saran, H., McKenzie, G.: Differential attenuation of some effects of haloperidol in rats given scopolamine. Eur. J. Pharmacol. 39, 117–126 (1976)Google Scholar
  33. Stone, E. A.: Stress and catecholamines. In: Catecholamines and behavior, Vol. II, A. J. Friedhoff, ed., pp. 31–72. New York: Plenum 1975Google Scholar
  34. Thierry, A. M.: Effects of stress on the metabolism of serotonin and norepinephrine in the central nervous system of the rat. In: Hormones, metabolism and stress: recent progress and prespectives, S. Nemeth, ed., pp. 37–55. Bratislava: Publishing House of the Slovak Academy of Sciences 1973Google Scholar
  35. Thierry, A. M., Blanc, G., Glowinski, J.: Effect of stress on the disposition of catecholamines localized in various intraneuronal storage forms in the brain stem of the rat. J. Neurochem. 18, 449–461 (1971)Google Scholar
  36. Thornburg, J. E., Moore, K. L.: The relative importance of dopaminergic and noradrenergic neuronal systems for the stimulation of locomotor activity induced by amphetamine and other drugs. Neuropharmacology 12, 853–866 (1973)Google Scholar
  37. Usdin, E., Kvetnansky, R., Kopin, I. J.: Stress and catecholamines. Oxffod: Pergamon 1976Google Scholar
  38. Vertes, R. P., Glazer, H. I.: Affects of acute exposure to stressors on subsequent avoidance-escape behavior. Psychosom. Med. 37, 499–521 (1975)Google Scholar
  39. Weiss, J. M., Glazer, H. I., Pohorecky, L. A.: Coping behavior and neurochemical changes: An alternative explanation for the original “learned helplessness” experiments. In: Animal models in human psychobiology, G. Serban and A. Kling, eds. New York: Plenum 1976Google Scholar
  40. Weiss, J. M., Stone, E. A., Harrell, N.: Coping behavior and brain norepinephrine level in rats. J. Comp. Physiol. Psychol 72, 153–160 (1970)Google Scholar
  41. Winer, B. J.: Statistical principles in experimental design. New York: McGraw-Hill 1971Google Scholar
  42. Yokel, R. A., Wise, R. A.: Increased lever pressing for amphetamine after pimozide in rats: implications for a dopamine theory of reward. Science 187, 547–549 (1975)Google Scholar
  43. Zajaczkowska, M. N.: Acetylcholine content in the central and peripheral nervous system and its synthesis in the rat brain during stress and post stress exhaustion. Acta Physiol. Pol. 26, 493–497 (1975)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Hymie Anisman
    • 1
  • Gary Remington
    • 1
  • Lawrence S. Sklar
    • 1
  1. 1.Department of PsychologyCarleton UniversityOttawaCanada

Personalised recommendations