Psychopharmacology

, Volume 60, Issue 3, pp 271–276 | Cite as

Effects of thioproperazine and sulpiride on the locomotor rhythms in the decorticate cat

  • D. Pointis
  • P. Borenstein
Original Investigations
  • 18 Downloads

Abstract

The decorticate cat develops sequences of locomotor movements, especially in the two posterior limbs: those appear either spontaneously, or following a single shock applied to L7 dorsal root. Using this preparation, we tested the effects of two neuroleptic agents, Thioproperazine (TZ) and Sulpiride (S), through either systemic administration or local injection into the lateral-posterior hypothalamus and into the lumbar spinal cord.

TZ administered i.v. (0.5 mg/kg) suppressed all locomotor rhythms, while S induced unclear effects. The tested drugs clearly acted at the hypothalamic level, but the effects of the drugs were opposite; TZ (70 μg) suppressed rhythms, while S (350 μg) increased or even induced them. TZ (50 μg) injected at the L7 cord-level abolished rhythms, and S (350 μg) reduced their amplitude but increased the duration of locomotor sequences. The flexion reflex was never affected by these drugs.

The two drugs seem to act at the spinal and the hypothalamic levels. The possible mechanisms involved in their action are discussed.

Key words

Locomotor activity Lateral-posterior hypothalamus Lumbar spinal cord Thioproperazine Sulpiride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N. E.: Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs. J. Pharm. Pharmacol. 24, 905–906 (1972)Google Scholar
  2. Andén, N. E., Butcher, S., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970)Google Scholar
  3. Andén, N. E., Roos, B. E., Werdinius, B.: Effects of chlorpromazine, haloperidol and reserpine on the levels of phenolic acids in rabbit corpus striatum. Life Sci. 3, 149–158 (1964)Google Scholar
  4. Arshavsky, J. J., Berkinblit, M. B., Fuxon, O., Gelfand, J. M., Orlovsky, G. N.: Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain Res. 43, 273–279 (1972)Google Scholar
  5. Bartholini, G., Stadler, H., Llyod, K. G.: Cholinergic dopaminergic interactions in the extrapyramidal system. Adv. Neurol 3, 233–241 (1973)Google Scholar
  6. Bartholini, G.: Differential effect of neuroleptic drugs on dopamine turnover in the extrapyramidal and limbic system. J. Pharm. Pharmacol. 28, 429–433 (1976)Google Scholar
  7. Cannon, W. B., Britton, S. W.: Bodily changes in pain, hunger, fear and rage. New York: Appleton 1928Google Scholar
  8. Cheramy, A., Besson, M. J., Glowinski, J.: Increased release of dopamine from striatal dopaminergic terminals in the rat after treatment with a neuroleptic: thioproperazine. Eur. J. Pharmacol. 10, 206–214 (1970)Google Scholar
  9. Corrodi, H., Fuxe, K., Hokfelt, T.: The effect of neuroleptics on the activity of central catecholamine neurones. Life Sci. 6, 767–774 (1967)Google Scholar
  10. Corrodi, H., Fuxe, K., Ungerstedt, U.: Evidence for a new type of dopamine receptor stimulating agent. J. Pharm. Pharmacol. 23, 989–991 (1971)Google Scholar
  11. Da Prada, M., Pletscher, A.: Acceleration of the cerebral dopamine turnover by chlorpromazine. Experientia 22, 465 (1966)Google Scholar
  12. Dusser de Barenne, J. G.: Recherches expérimentales sur les fonctions du système nerveux central faites en particulier sur deux chats dont le néopallium a été enlevé. Arch. Neurol. Physiol. 4, 31–123 (1920)Google Scholar
  13. Ellison, G. D., Flynn, J. P.: Organized aggressive behavior in cats after surgical isolation of the hypothalamus. Arch. Ital. Biol. 106, 1–20 (1968)Google Scholar
  14. Goldman, D.: Parkinsonism and related phenomena from administration of drugs: their production and control under clinical conditions and possible relation to therapeutic effect: In: Extrapyramidal system and neuroleptic. J. M. Bordeleau (ed.), pp. 453–464. Montréal: Editions Psychiatriques 1961Google Scholar
  15. Grillner, S.: Locomotion in vertebrates: Central mechanisms and reflex interaction. Physiological Reviews Vol. 55, No. 2 (1975)Google Scholar
  16. Haase, H. J., Floru, L., Ulrich, F.: Clinical neuroleptic investigation of N-(1-ethyl-pyrrolidine-2-yl)-methyl-2-metoxy-5-sulfamoyl benzamide the neuroleptic sulpiride (Dogmatil) using acute schizophrenics. Int. Pharmacopsychiatry 9, 77–94 (1974)Google Scholar
  17. Hornykiewicz, O.: Parkinsons diseases: from brain homogenate to treatment. Fed. Proc. 32, 183–190 (1973)Google Scholar
  18. Jasper, H. H., Ajmone-Marshan, C.: Asteuotaxie atlas of the diencephalon of the cat. Nat. Res. Council, Canada, Ottawa (1954)Google Scholar
  19. Laverty, R., Sharman, D. F.: Modification by drugs of the metabolism of 3–4-dihydroxyphenylethylamine, noradrenaline and 5-hydroxytryptamine in the brain. Br. J. Pharmacol. Chemother. 24, 759–772 (1965)Google Scholar
  20. Perret, C., Millanvoye, M., Cabelguen, J. M.: Messages spinaux ascendants pendant une locomotion fictive chez le chat curarisé. J. Physiol. (Paris) 65, 153A (1972)Google Scholar
  21. Rexed, B. A.: Cytoarchitectonic atlas of the spinol cord in the cat. J. Comp. Neurol. 100, 297–379 (1954)Google Scholar
  22. Rothmann, H.: Zusammenfassender Bericht über den Rothmannschen Großhirnlosen Hund nach klinischer und anatomischer Untersuchung. Z. Gesamte Neurol. Psychiatry 87, 247–313 (1923)Google Scholar
  23. Shik, M. L., Severin, F. V., Orlovsky, G. N.: Control of walking by means of electrical stimulation of the midbrain. Biophysics 11, 756–765 [translation of Biofizica 659–666] (1966)Google Scholar
  24. Viala, G., Orsal, D.: Dépression de messages spinaux ascendants suscités par l'activation des fibres C, lors de l'inhibition de la locomotion chez le lapin. J. Physiol. (Paris) 72, No. 3, 32A (1976)Google Scholar
  25. Vinar, O., Krsiak, M.: Prediction of neuroleptic effects from animal data. In: Phenothiazines and structurally related drugs, I. S. Forrest, C. J. Carr, and E. Usdin (eds.), pp. 675–683. New York: Raven 1974Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. Pointis
    • 1
  • P. Borenstein
    • 1
  1. 1.Laboratoire de Psychopharmacologie NeurophysiologiqueEcole Pratique des Hautes EtudesVillejuifFrance

Personalised recommendations