Advertisement

Psychopharmacology

, Volume 59, Issue 3, pp 247–254 | Cite as

Evidence for a dopaminergic dominance in the 4,α-dimethyl-m-tyramine-induced hypermotility in mice

  • Clase Rüdeberg
Original Investigations
  • 22 Downloads

Abstract

The effects of various drugs on the hypermotility induced in mice by 4,α-dimethyl-m-tyramine (H 77/77) was investigated.

The H 77/77-induced hypermotility was strongly inhibited by centrally acting dopamine-(DA-) receptor blockers (e.g., benperidol, fluspirilene, haloperidol) and potentiated by drugs increasing central DA activity by release of DA, by uptake inhibition (d- and l-amphetamine, nomifensine), or by inhibition of monoamine oxidase (e.g., parglyline, chlorgyline). While DA-receptor agonists (e.g., bromocriptine, ergocornine) potentiated hypermotility, the effects of those having a short duration of action (apomorphine, piribedil) were partly obscured. The catecholamine precursor L-dopa increased hypermotility only slightly, but its effect was markedly potentiated after inhibition of dopa decarboxylase.

Inhibition of tyrosine hydroxylase with α-methyltyrosine methyl ester HCl (H 44/68) totally blocked H 77/77 hypermotility. Inhibition of noradrenaline (NA) synthesis with bis-(4-methyl-l-homopiperazinyl thiocarbonyl)-disulphide (FLA 63) had no significant effect, whereas after sodium diethyldithiocarbamate (DDC) there was a moderate decrease in motility of about 25%.

Blockers of α- and β-adrenoceptors either did not affect H 77/77 hypermotility (e.g., WB 4101, pindolol) or inhibited it only at very high doses (e.g., phentolamine, propranolol). α-Adrenoceptor agonists (clonidine, guanfacine) had no clear effects.

No correlation was found between the H 77/77-inhibiting effect of antidepressant drugs and their ability to inhibit NA uptake.

Several antiserotoninergic compounds (pizotifen, 27-096, 29-245) blocked the effects of H 77/77, and a 65% drop in hypermotility was obtained after inhibition of 5-HT-synthesis with 6-flourotryptophan. Substances that increase central serotoninergic activity (l-5-HTP, fenfluramine), however, were inactive.

Anticholinergic drugs (e.g., atropine, dexetimide) increased H 77/77 hypermotility, whereas cholinergic drugs (e.g., arecoline, physostigmine) produced no dose-related effect.

It is cocluded that DA plays a dominant role in the H 77/77-induced hypermotility in mice, although functional NA and 5-HT systems appear to be a prerequisite for the full H 77/77 effect.

Key words

H 77/77 Dopamine Noradrenaline Serotonin Antischizophrenic drugs Antidepressant drugs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén, N.-E., Butcher, S. G., Corrodi, H., Fuxe, K., Ungerstedt, U.: Receptor activity and turnover of dopamine and noradrenaline after neuroleptics. Eur. J. Pharmacol. 11, 303–314 (1970)Google Scholar
  2. Bartholini, G., Pletscher, A.: Cerebral accumulation and metabolism of C14-dopa after selective inhibition of peripheral decarboxylase. J. Pharmacol. Exp. Ther. 161, 14–20 (1968)Google Scholar
  3. Braestrup, C., Scheel-Krüger, J.: Methylphenidate-like effects of the new antidepressant drug nomifensine (HOE 984) Eur. J. Pharmacol. 38, 305–312 (1976)Google Scholar
  4. Buus Lassen, J.: Evidence for a noradrenergic and dopaminergic mechanism in the hyperactivity produced by 4,α-dimethyl-m-tyramine (H 77/77) in rats. Psychopharmacologia (Berl.) 37, 331–340 (1974)Google Scholar
  5. Buus Lassen, J.: Inhibition of 4,α-dimethyl-m-tyramine (H 77/77)-induced hypermotility in rats by single and repeated administration of chlorpromazine, haloperidol, clozapine and thioridazine. Psychopharmacologia (Berl.) 43, 25–29 (1975)Google Scholar
  6. Buus Lassen, J.: Inhibition and potentiation of apomorphine-induced hypermotility in rats by neuroleptics. Eur. J. Pharmacol. 36, 385–393 (1976)Google Scholar
  7. Carisson, A.: Antipsychotic drugs and catecholamine synapses. J. Psychiatr. Res. 11, 57–64 (1974)Google Scholar
  8. Carlsson, A., Corrodi, H., Fuxe, K., Hökfelt, T.: Effects of some antidepressant drugs on the depletion of intraneuronal brain catecholamine stores caused by 4,α-dimethyl-meta-tyramine. Eur. J. Pharmacol. 5, 367–373 (1969)Google Scholar
  9. Carlsson, A., Lindqvist, M., Wysokowski, J., Corrodi, H., Junggren, U.: Substituted metatyramines as brain monoamine depletors. Acta Pharm. Suec. 7, 293–302 (1970)Google Scholar
  10. Cools, A. R., Honig, W. M. M., Pijnenburg, A. J. J., van Rossum, J. M.: The nucleus accumbens of rats and dopaminergic mechanisms regulating locomotor behaviour. Neurosci. Lett. 3, 335–339 (1967a)Google Scholar
  11. Cools, A. R., Struyker Boudier, H. A. J., van Rossum, J. M.: Dopamine receptors: selective agonists and antagonists of functionally distinct types within the feline brain. Eur. J. Pharmacol. 37, 283–293 (1976b)Google Scholar
  12. Cools, A. R., van Rossum, J. M.: Excitation-mediating and inhibition-mediating dopamine-receptors: a new concept toward a better understanding of electrophysiological, biochemical, pharmacological, functional and clinical data. Psychopharmacologia (Berl.) 45, 243–254 (1976)Google Scholar
  13. Cott, J., Engel, J.: Suppression by GABAergic drugs of the locomotor stimulation induced by morphine, amphetamine, and apomorphine: evidence for both pre- and post-synaptic inhibition of catecholamine systems. J. Neural. Transm. 40, 253–268 (1977)Google Scholar
  14. Dixon, A. K., Hill, R. C., Roemer, D., Scholtysik, G.: Pharmacological properties of 4-(1-methyl-4-piperidylidine)-9,10-dihydro-4H-benzo-(4,5)cyclohepta(1,2)-thiophene hydrogen maleate (pizotifen). Arzneim. Forsch. 27, 1968–1979 (1977)Google Scholar
  15. Forn, J., Krueger, B. K., Greengard, P.: Adenosine 3′,5′-monophosphate content in rat caudate nucleus: demonstration of dopaminergic and adrenergic receptors. Science 186, 1118–1120 (1974)Google Scholar
  16. Fuxe, K., Bolme, P., Agnati, L., Everitt, B. J.: The effect of dl-, l- and d-propranolol on central monoamine neurones. I. Studies on dopamine mechanisms. Neurosci. Lett. 3, 45–52 (1976)Google Scholar
  17. Fuxe, K., Ögren, S.-O., Agnati, L. F., Eneroth, P., Gustafsson, J.-Å., Jonsson, G., Skett, P.: Effect of antidepressant drugs on the secretion of anterior pituitary hormones. Symposium on biogenic amines and affective disorder, Gothenburg, November 21–22, 1977 (in press, 1978)Google Scholar
  18. Fuxe, K., Ögren, S.-O., Agnati, L., Gustafsson, J.-Å, Jonsson, G.: On the mechanism of action of the antidepressant drugs amitriptyline and nortriptyline. Evidence for 5-hydroxytryptamine receptor blocking activity. Neurosci. Lett. 6, 339–345 (1977)Google Scholar
  19. Gluckman, M. I., Baum, T.: The pharmacology of iprindole, a new antidepressant. Psychopharmacologia (Berl.) 15, 169–185 (1969)Google Scholar
  20. Greenberg, D. A., U'Prichard, D. C., Snyder, S. H.: Alphanoradrenergic receptor binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci. 19, 69–76 (1976)Google Scholar
  21. Haefely, W., Kulcsár, A., Möhler, H., Pieri, L., Polc, P., Schaffner, R.: Possible involvement of GABA in the central actions of benzodiazepines. In: Mechanisms of action of benzodiazepines, E. Costa and P. Greengard, eds., pp. 131–151. New York: Raven 1975Google Scholar
  22. Horii, D., Kawada, T., Takeda, K., Imai, S.: Comparison of β-adrenergic blocking activities of propranolol, isopropylmethoxamine, sotalol, practolol, alprenolol, pindolol, oxprenolol and D-32 in the atria and trachea of guinea-pig. Arzeim. Forsch. 24, 1275–1277 (1974)Google Scholar
  23. Hungen, K., von Roberts, S.: Catecholamine and Ca2+ activation of adenylate cyclase system in synaptosomal fraction from rat cerebral cortex. Nature [New Biol.] 242, 58–60 (1973)Google Scholar
  24. Hunt, P., Kannengiesser, M. H., Raynaud, J.-P.: Nomifensine: a new potent inhibitor of dopamine uptake into synaptosomes from rat brain corpus striatum. J. Pharm. Pharmacol. 26, 370–371 (1974)Google Scholar
  25. Karobath, M. E.: Tricylic antidepressive drugs and dopaminesensitive adenylate cyclase from rat brain striatum. Eur. J. Pharmacol. 30, 159–163 (1975)Google Scholar
  26. Keller, H. H., Bartholini, G., Pletscher, A.: Increase of 3-methoxy-4-hydroxyphenylethylene glycol in rat brain by neuroleptic drugs. Eur. J. Pharmacol. 23, 183–186 (1973)Google Scholar
  27. Laduron, P., De Bie, K., Leysen, J.: Specific effect of haloperidol on dopamine turnover in the frontal cortex. Naunyn Schmiedebergs Arch. Pharmacol. 296, 183–185 (1977)Google Scholar
  28. Meisch, J.-J., Waldeck, B.: On the disposition of 4,α-dimethylmetatyramine in the brain and heart of the mouse. Naunyn Schmiedebergs Arch. Pharmacol 273, 75–85 (1972)Google Scholar
  29. Nakra, B. R. S., Bond, A. J., Lader, M. H.: Comparative psychotropic effects of metoclopramide and prochlorperazine in normal subjects. J. Clin. Pharmacol. 15, 449–454 (1975)Google Scholar
  30. Nybäck, H., Sedvall, G.: Further studies on the accumulation and disappearance of catecholamines formed from tyrosine-14C in mouse brain. Effect of some phenothiazine analogues. Eur. J. Pharmacol. 10, 193–205 (1970)Google Scholar
  31. Peringer, E., Jenner, P., Donaldson, I. M., Marsden, C. D., Miller, R.: Metoclopramide and dopamine receptor blockade. Neuropharmacology 15, 463–469 (1976)Google Scholar
  32. Peters, D. A. V.: Inhibition of serotonin biosynthesis by 6-halotryptophans in vivo. Biochem. Pharmacol. 20, 1413–1420 (1971)Google Scholar
  33. Petersen, E. N., Olsson, S.-O., Squires, R. F.: Effects of 5HT uptake inhibitors on the pressor response to 5HT in the pithed rat. Eur. J. Pharmacol. 43, 209–215 (1977)Google Scholar
  34. Pugsley, T. A., Lippmann, W.: Effect of butriptyline on the brain uptake mechanisms for noradrenaline and 5-hydroxytryptamine. J. Pharm. Pharmacol. 26, 778–782 (1974)Google Scholar
  35. Salama, A. J., Insalaco, J. R., Maxwell, R. A.: Concerning the molecular requirements for the inhibition of the uptake of racemic 3H-norepinephrine into rat cerebral cortex slices by tricyclic antidepressants and related compounds. J. Pharmacol. Exp. Ther. 178, 474–481 (1971)Google Scholar
  36. Sayers, A. C., Bürki, H. R., Ruch, W., Asper, H.: Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rat as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacologia (Berl.) 41, 97–104 (1975)Google Scholar
  37. Scatton, B., Boireau, A., Garret, C., Glowinski, J., Julou, L.: Action of the palmitic ester of pipotiazine on dopamine metabolism in the nigro-striatal, meso-limbic and meso-cortical systems. Naunyn Schmiedebergs Arch. Pharmacol. 296, 169–175 (1977)Google Scholar
  38. Stille, G., Lauener, H., Eichenberger, E.: The pharmacology of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo(b,e)(1,4)diazepine (clozapine). Framco [Prat.] 26, 603–625 (1971)Google Scholar
  39. Waddington, J. L.: GABA-like properties of flurazepam and baclofen suggested by rotational behaviour following unilateral intranigral injection: a comparison with the GABA agonist muscimol. Br. J. Pharmacol. 60, 263P-264P (1977)Google Scholar
  40. Weinstock, M., Weiss, C., Gitter, S.: Blockade of 5-hydroxytryptamine receptors in the central nervous system by β-adrenoceptor antagonists. Neuropharmacology 16, 273–276 (1977)Google Scholar
  41. Westerink, B. H. G., Lejeune, B., Korf, J., van Praag, H. M.: On the significance of regional dopamine metabolism in the rat brain for the classification of centrally acting drugs. Eur. J. Pharmacol. 42, 179–190 (1977)Google Scholar
  42. Wiesel, F.-A.: Effects of high dose propranolol treatment on dopamine and norpinephrine metabolism in regions of rat brain. Neurosci. Lett. 2, 35–39 (1976)Google Scholar
  43. Wiesel, F.-A.: Effects of the isomeric forms of propranolol on central monoamine metabolism in regions of rat brain. Prog. Neuro-Psychopharmacol. 1, 83–89 (1977)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Clase Rüdeberg
    • 1
  1. 1.Research Institute Wander, a Sandoz Research UnitWander Ltd.BerneSwitzerland

Personalised recommendations