, Volume 59, Issue 3, pp 211–216 | Cite as

Dopamine-receptor binding and adenylate-cyclase activity in mouse striatal tissue in the supersensitivity phase after neuroleptic treatment

  • John Hyttel
Original Investigations


The specific binding of 3H-labelled haloperidol (3H-Hal) and the basal and dopamine-stimulated adenylate-cyclase activity in vitro were investigated in mice treated with a single dose or with repeated doses of neuroleptic drugs. These dose regimens are known to induce behavioural supersensitivity and to decrease dopamine synthesis and release a few days after cessation of dosage.

Shortly after a single dose of teflutixol (5 mg/kg i.p.) the binding of 3H-Hal was reduced to very low levels. Four and five days later the apparent number of receptor-binding sites was slightly reduced. The binding returned to normal levels after 6 days. The reduced binding most likely reflects the receptor blockade induced by teflutixol. Four days after treatment both basal and dopamine-stimulated adenylate cyclase were within normal limits. Six days following a single dose of piflutixol (0.08 mg/kg i.p.) a light increase in dopamine-stimulated adenylate cyclase activity was observed. Three days after repeated doses of haloperidol (1.25 mg/kg p.o. daily for 5 days), both basal and dopamine-stimulated adenylate cyclase were unchanged. After 3 weeks treatment with teflutixol (5 mg/kg i.p. daily), the specific binding of 3H-Hal was slightly reduced 5 days after, but almost equal to controls 8 days after the last dose.

The data presented neither support nor reject the hypothesis of an increased number of DA receptors in the supersensitivity phase after neuroleptic treatment of mice.

Key words

3H-Haloperidol binding Adenylate cyclase c-AMP Supersensitivity Neuroleptics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asper, H., Baggiolini, M., Bürki, H. R., Lauener, H., Ruch, W., Stille, G.: Tolerance phenomena with neuroleptics. Catalepsy, apomorphine stereotypies and striatal dopamine metabolism in the rat after single and repeated administration of loxapine and haloperidol. Eur. J. Pharmacol. 22, 287–294 (1973)Google Scholar
  2. Burkard, W. P., Bartholini, G.: Changes in activation of adenylate cyclase and of dopamine turnover in rat striatum during prolonged haloperidol treatment. Experientia 30, 685–686 (1974)Google Scholar
  3. Burt, D. R., Creese, I., Snyder, S. H.: Properties of [3H] haloperidol and [3H] dopamine binding associated with dopamine receptors in calf brain membranes. Mol. Pharmacol. 12, 800–812 (1976)Google Scholar
  4. Burt, D. R., Creese, I., Snyder, S. H.: Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196, 326–328 (1977)Google Scholar
  5. Christensen, A. V.: Acute and delayed effects of a single dose of a neuroleptic drug. Acta Physiol. Scand. [Suppl.] 396, 78 (1973)Google Scholar
  6. Christensen, A. V., Fjalland, B., Møller Nielsen, I.: On the super-sensitivity of dopamine receptors, induced by neuroleptics. Psychopharmacology 48, 1–6 (1976)Google Scholar
  7. Christensen, A. V., Møller Nielsen, I.: Influence of flupenthixol and flupenthixol-decanoate on methylphenidate and apomorphine induced compulsive gnawing in mice. Psychopharmacologia (Berl.) 34, 119–126 (1974)Google Scholar
  8. Costentin, J., Marcais, H., Protains, P., Baudry, M., De La Baume, S., Martres, M. P., Schwartz, J.-C.: Rapid development of hyper-sensitivity of striatal dopamine receptors induced by alpha-methylparatyrosine and its prevention by protein synthesis inhibitors. Life Sci. 21, 307–314 (1977)Google Scholar
  9. Creese, I., Burt, D. R., Snyder, S. H.: Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192, 481–483 (1976)Google Scholar
  10. Creese, I., Burt, D. R., Snyder, S. H.: Dopamine receptor binding enhancement accompanies lesion-induced behavioral super-sensitivity. Science 197, 596–598 (1977)Google Scholar
  11. Fjalland, B., Møller Nielsen, I.: Enhancement of methylphenidate-induced stereotypies by repeated administration of neuroleptics. Psychopharmacologia (Berl.) 34, 105–109 (1974a)Google Scholar
  12. Fjalland, B., Møller Nielsen, I.: Methylphenidate antagonism of haloperidol, interaction with cholinergic and anticholinergic drugs. Psychopharmacologia (Berl.) 34, 111–118 (1974b)Google Scholar
  13. Fredholm, B. B.: Decreased adenosine cycline 3′,5′-monophosphate phosphodiesterase activity in rat striatum following chronic haloperidol treatment. Med. Biol. 55, 61–65 (1977)Google Scholar
  14. Friedhoff, A. J., Bonnet, K., Rosengarten, H.: Reversal of two manifestation of dopamine receptor supersensitivity by administration of L-dopa. Res. Commun. Chem. Pathol. Pharmacol. 16, 411–423 (1977)Google Scholar
  15. Geisler, A., Klysner, R., Thams, P., Christensen, S.: A simple and inexpensive protein binding assay for cyclic AMP in biological materials. Acta Pharmacol. Toxicol. (Kbb) 40, 356–368 (1977)Google Scholar
  16. Gnegy, M., Uzunov, P., Costa, E.: Participation of an endogenous Ca++-binding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors. J. Pharmacol. Exp. Ther. 202, 558–564 (1977)Google Scholar
  17. Heal, D. J., Green, A. R., Boullin, D. J., Grahame-Smith, D. G.: Single and repeated administration of neuroleptic drugs to rats: effects on striatal dopamine-sensitive adenylate cyclase and locomotor activity produced by tranylcypromine and L-tryptophan or L-dopa. Psychopharmacology 49, 287–300 (1976)Google Scholar
  18. Hyttel, J.: Long-term effects of teflutixol on the synthesis and endogenous levels of mouse brain catecholamines. J. Neurochem. 25, 681–686 (1975)Google Scholar
  19. Hyttel, J.: Levels of HVA and DOPAC in mouse corpus striatum in the supersensitivity phase after neuroleptic treatment. J. Neurochem. 28, 227–228 (1977a)Google Scholar
  20. Hyttel, J.: Changes in dopamine synthesis rate in the supersensitivity phase after treatment with a single dose of neuroleptics. Psychopharmacology 51, 205–207 (1977b)Google Scholar
  21. Hyttel, J.: Effect of piflutixol on turnover of catecholamines in mouse brain and rat corpus striatum. Acta Pharmacol. Toxicol (Kbh) 41, 449–457 (1977c)Google Scholar
  22. Hyttel, J.: Effects of neuroleptics on 3H-haloperidol and 3H-cis(z)-flupenthixol binding and on adenylate cyclase activity in vitro. Life Sci. 23, 551–556 (1978)Google Scholar
  23. Hyttel, J., Møller Nielsen, I.: Changes in catecholamine concentrations and synthesis rate in mouse brain during the “supersensitivity” phase after treatment with neuroleptic drugs. J. Neurochem. 27, 313–315 (1976)Google Scholar
  24. Iwatsubo, K., Clouet, D. H.: Dopamine-sensitive adenylate cyclase of the caudate nucleus of rats treated with morphine or haloperidol. Biochem. Pharmacol. 24, 1499–1503 (1975)Google Scholar
  25. Klawans, H. L., Rubovitz, R.: An experimental model of tardive dyskinesia. J. Neural Transm. 33, 235–246 (1972)Google Scholar
  26. Krueger, B. K., Forn, J., Walters, J. R., Roth, R. H., Greengard, P.: Stimulation by dopamine of adenosine 3′,5′-monophosphate formation in rat caudate nucleus: effect of lesions of the nigroneostriatal pathway. Mol. Pharmacol. 12, 639–648 (1976)Google Scholar
  27. Martres, M. P., Costentin, J., Baudry, M., Marcais, H., Protais, P., Schwartz, J. C.: Long-term changes in the sensitivity of pre- and postsynaptic dopamine receptors in mouse striatum evidenced by behavioral and biochemical studies. Brain Res. 136, 319–337 (1977)Google Scholar
  28. Miller, R. J., Horn, A. S., Iversen, L. L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′,5′-monophosphate production in rat neostriatum and limbic forebrain. Mol. Pharmacol. 10, 759–766 (1974)Google Scholar
  29. Mishra, R. K., Gardner, E. L., Katzman, R., Makman, M. H.: Enhancement of dopamine-stimulated adenylate cyclase activity in rat caudate after lesions in substantia nigra: evidence for denervation supersensitivity. Proc. Natl. Acad. Sci. U.S.A. 71, 3883–3887 (1974)Google Scholar
  30. Moore, K. E., Thornburg, J. E.: Drug-induced dopaminergic supersensitivity. In: Advances in neurology, vol. 9, D. B. Calne, T. N. Chase, and A. Barbeau, eds., pp. 93–104. New York: Raven 1975Google Scholar
  31. Møller Nielsen, I., Christensen, A. V.: Long term effects of neuroleptic drugs. J. Pharmacol. (Paris) 6, 277–282 (1975)Google Scholar
  32. Møller Nielsen, I., Christensen, A. V., Fjalland, B.: Receptor blockade and receptor supersensitivity following neuroleptic treatment. In: Antipsychotic drugs: pharmacodynamics and pharmacokinetics, G. Sedvall, B. Uvnäs, and B. Zotterman, eds., pp. 257–260. London: Pergamon 1976Google Scholar
  33. Møller Nielsen, I., Christensen, A. V., Hyttel, J.: Rezeptorblockade und Rezeptorhypersensibilität nach Behandlung mit Neuroleptika. Arzneim. Forsch. 26, 1090–1092 (1976)Google Scholar
  34. Palmer, G. C., Wagner R.: Supersensitivity of striatal and cortical adenylate cyclase following reserpine: lack of effect of chronic haloperidol. Res. Commun. Psychol. Psychiatr. Behav 1, 567–570 (1976)Google Scholar
  35. Rotrosen, J., Friedman, E., Gershon, S.: Striatal adenylate cyclase activity following reserpine and chronic chlorpromazine administration in rats. Life Sci. 17, 563–568 (1975)Google Scholar
  36. Roufogalis, B. D., Thornton, M., Wade, D. N.: Specificity of the dopamine sensitive adenylate cyclase for antipsychotic antagonists. Life Sci. 19, 927–934 (1976)Google Scholar
  37. Sayers, A. C., Bürki, H. R., Ruch, W., Asper, H.: Neuroleptic-induced hypersensitivity of striatal dopamine receptors in the rats as a model of tardive dyskinesias. Effects of clozapine, haloperidol, loxapine and chlorpromazine. Psychopharmacologia (Berl.) 41, 97–104 (1975)Google Scholar
  38. Scatton, B., Dedek, J., Korf, J.: Effect of single and repeated administration of haloperidol and sulpiride on striatal and retinal dopamine turnover in the rat. Brain. Res. 135, 374–337 (1977)Google Scholar
  39. Scatton, B., Garret, C., Glowinski, J., Julou, L.: Effect of a long-acting injectable neuroleptic (the palmitic ester of pipothiazine) on dopamine metabolism in the rat striatum. Procedings of the IX Congress of the Collegium Internationale Neuropsycho-pharmacologicum Paris, 7–12 July, 1974Google Scholar
  40. Scatton, B., Garret, C., Julou, L.: Acute and subacute effects of neuroleptics on dopamine synthetis and release in the rat striatum. Arch. Pharmacol. 289, 419–434 (1975)Google Scholar
  41. Seeman, P.: Anti-schizophrenic drugs-membrane receptor sites of action. Biochem. Pharmacol. 26, 1741–1748 (1977)Google Scholar
  42. Tarsy, D., Baldessarini, R. J.: Behavioural supersensitivity to apomorphine following chronic treatment with drugs which interfere with the synaptic function of catecholamines. Neuropharmacology 13, 927–940 (1974)Google Scholar
  43. Ungerstedt, U.: Postsynaptic supersensitivity after 6-hydroxydopamine-induced degeneration of the nigro-striatal dopamine system. Acta Physiol. Scand. [Suppl.] 367, 69–93 (1971)Google Scholar
  44. Ungerstedt, U., Arbuthnott, G.: Quantitative recording of rotational behaviour in rats after 6-hydroxy-dopamine lesions of the nigrostriatal dopamine system. Brain Res. 24, 485–493 (1970)Google Scholar
  45. Von Voigtlander, P. F., Boukma, S. J., Johnson, G. A.: Dopaminergic denervation supersensitivity and dopamine stimulated adenyl cyclase activity. Neuropharmacology 12, 1081–1086 (1973)Google Scholar
  46. Von Voigtlander, P. F., Losey, E. G., Triezenberg, H. J.: Increased sensitivity to dopaminergic agents after chronic neuroleptic treatment. J. Pharmacol. Exp. Ther. 193, 88–94 (1975)Google Scholar
  47. Waldmeier, P. C., Maître, L.: Clozapine: Reduction of the initial dopamine turnover increase by repeated treatment. Eur. J. Pharmacol. 88, 197–203 (1976)Google Scholar
  48. Walsh, D. A., Perkins, J. P., Krebs, E. G.: An adenosine 3′,5′-monophosphate-dependant protein kinase from rabbit skeletal muscle. J. Biol. Chem. 243, 3763–3774 (1968)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • John Hyttel
    • 1
  1. 1.Department of Pharmacology and ToxicologyH. Lundbeck & Co. A/SValbyDenmark

Personalised recommendations