Psychopharmacology

, Volume 54, Issue 1, pp 9–16 | Cite as

Endogenous ligands of a putative LSD-serotonin receptor in the cerebrospinal fluid: Higher level of LSD-displacing factors (LDF) in unmedicated psychotic patients

  • E. Mehl
  • E. Rüther
  • J. Redemann
Original Investigations

Abstract

In human cerebrospinal fluid substances were detected that are capable of reversibly displacing the hallucinogen d-lysergic acid diethylamide (LSD) from its high-affinity binding sites in neuronal membranes. The binding sites may represent a specific type of LSD-serotonin receptor protein. The LSD-displacing factors (LDF) occur physiologically in concentrations high enough to interact with the putative LSD-serotonin receptors. The LDF can be separated from proteins and inorganic salts. LDF was found to be clearly different from endogenous indoleamine ligands such as serotonin, being anionic at pH 7.4.

The LDF concentration was assayed in the cerebrospinal fluid of 49 nonpsychotic and of 19 acute psychotic patients before 30 days therapy with the antipsychotic drugs haloperidol or clozapine. LDF concentration was found to be significantly higher (P<0.001) in the group of unmedicated acute psychotic patients (5.55 U/ml) in comparison to the control group (3.56 U/ml). Within this group of acute psychotic patients, a high positive correlation was found between concentration of LDF and clinical improvement (r=0.650). Thus, a nosological subgroup was traced out, characterized by both a higher concentration of LDF and a higher responsiveness to antipsychotic drugs (P<0.01). Ratings of clinical improvement and determinations of the concentration of LDF before drug therapy were performed in a doubleblind study. Since antipsychotic drugs act on dopamine receptors and LDF acts on putative serotonin receptors, dopamine and serotonin receptors may both be affected in the psychotic state. A working hypothesis is offered that links the dopamine and the serotonin hypotheses.

Key words

LSD Serotonin Receptor Endogenous ligand Acute schizophrenia Antipsychotic drug 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackenheil, M., Beckmann, H., Greil, W., Hoffmann, G., Markianos, E., Raese, T.: Antipsychotic efficacy of clozapine in correlation to changes in catecholamine metabolism in man. In: The phenothiazines and structurally related drugs. C. Forrest, T. C. Carr, and E. Usdin, eds., pp. 647–657. New York: Raven Press 1974Google Scholar
  2. Andén, N. E., Corrodi, H., Fuxe, K., Hökfelt, T.: Evidence for a central 5-hydroxytryptamine receptor stimulation by lysergic acid diethylamide. Br. J. Pharmacol. 34, 1–7 (1968)Google Scholar
  3. Angst, J., Battegay, R., Bente, D., Berner, P., Broeren, W., Heinemann, H., Heinrich, H., Engelmeier, M. P., Cornu, F., Dick, P., Hippius, H., Poeldinger, W., Schmidlein, P., Schmitt, W., Weiss, P.: Dokumentationssystem der Arbeitsgemeinschaft für Methodik und Dokumentationssystem in der Psychiatrie. (AMP) Arzneim. Forsch. (Drug. Res.) 19, 399–405 (1969)Google Scholar
  4. Ashcroft, G. W., Crawford, T. B. B., Eccleston, D., Sharman, D. F., MacDougall, E. J., Stanton, J. B., Binns, J. K.: 5-Hydroxyindole compounds in the cerebrospinal fluid of patients with psychiatric or neurological diseases. Lancet 1966 II, 1049–1052Google Scholar
  5. Bennett, J. L., Aghajanian, G. K.: D-LSD binding to brain homogenates: possible relationship to serotonin receptors. Life Sci. 15, 1935–1944 (1974)Google Scholar
  6. Bennett, J. P., Jr., Snyder, S. H.: Stereospecific binding of d-lysergic acid diethylamide (LSD) to brain membranes: relationship to serotonin receptors. Brain Res. 94, 523–544 (1975)Google Scholar
  7. Birkmayer, W., Danielczyk, W., Neumayer, E., Riederer, P.: Nucleus ruber and L-Dopa psychosis: biochemical post-mortem findings. J. Neural Transm. 35, 93–116 (1974)Google Scholar
  8. Boakes, R. J., Bradley, P. B., Briggs, I., Dray, A.: Antagonism of 5-hydroxytryptamine by LSD-25 in the central nervous system: a possible neuronal basis for the actions of LSD-25. Br. J. Pharmacol. 40, 202–218 (1970)Google Scholar
  9. Bowers, M. B., Jr.: 5-Hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA) following probenecid in acute psychotic patients treated with phenothiazines. Psychopharmacologia (Berl.) 28, 309–318 (1973)Google Scholar
  10. Bowers, M. B.: Serotonin (5-HT) systems in psychotic states. Psychopharmacol. Commun. 1, 655–662 (1975)Google Scholar
  11. Carpenter, W. T., Jr., Fink, E. B., Narasimhachari, N., Himwich, H. E.: A test of the transmethylation hypothesis in acute schizophrenic patients. Am. J. Psychiatry 132, 1067–1070 (1975)Google Scholar
  12. Cotman, C. W., Mahler, H. R., Anderson, N. G.: Isolation of a membrane fraction enriched in nerve-ending membranes from rat brain by zonal centrifugation. Biochim. Biophys. Acta 163, 272–275 (1968)Google Scholar
  13. Creese, I., Burt, D. R., Snyder, S. H.: Dopamine receptor binding: differentiation of agonist and antagonist states with 3H-dopamine and 3H-haloperidol. Life Sci. 17, 993–1002 (1975)Google Scholar
  14. Davis, J. M.: Maintenance therapy in psychiatry. I. Schizophrenia. Am. J. Psychiatry 132, 1237–1245 (1975)Google Scholar
  15. Davis, J. M.: Recent developments in the drug treatment of schizophrenia. Am. J. Psychiatry 133, 208–214 (1976)Google Scholar
  16. Farrow, J. T., van Vunakis, H.: Characteristics of D-lysergic acid diethylamide binding to subcellular fractions derived from rat brain. Biochem. Pharmacol. 22, 1103–1113 (1973)Google Scholar
  17. Gerlach, J., Koppelhus, P., Helweg, E., Monrad, A.: Clozapine and haloperidol in a single-blind cross-over trial: therapeutic and biochemical aspects in the treatment of schizophrenia. Acta Psychiatr. Scand. 50, 410–424 (1974)Google Scholar
  18. Gey, K. F., Pletscher, A.: Influence of chlorpromazine and chlorprotixene on the cerebral metabolism of 5-hydroxytryptamine norepinephrine and dopamine. J. Pharmacol. Exp. Ther. 133, 18–23 (1961)Google Scholar
  19. Gillin, J. C., Kaplan, J., Stillman, R., Wyatt, R. J.: The psychedelic model of schizophrenia: the case of N,N-dimethyltryptamine. Am. J. Psychiatry 133, 203–207 (1976)Google Scholar
  20. Green, A. R., Grahame-Smith, D. G.: Effects of drugs on the processes regulating the functional activity of brain 5-hydroxytryptamine. Nature (London) 260, 487–491 (1976)Google Scholar
  21. Hassler, R., Bak, I. J.: Unbalanced ratios of striatal dopamine and serotonin after experimental interruption of strianigral connections in the rat. In: Third symposium on Parkinson's Disease, F. J. Gillingham and I. M. L. Donaldson, eds., pp. 29–37. Edinburgh-London: Livingstone Ltd. 1969Google Scholar
  22. Horita, A., Hamilton, A. E.: The effects of D,l-α-methyltyrosine and L-Dopa on the hyperthermic and behavioral actions of LSD in rabbits. Neuropharmacology 12, 471–476 (1973)Google Scholar
  23. Kant, O.: The incidence of psychoses and other mental abnormalities in the families of recovered and deteriorated schizophrenic patients. Psychiatr. Q. 16, 176–186 (1942)Google Scholar
  24. Klein, D. F., Davis, J. M.: Diagnosis and drug treatment of psychiatric disorders. Baltimore: Williams & Wilkins 1969Google Scholar
  25. Kostowski, W., Gomulka, W., Czlonkowski, A.: Reduced cataleptogenic effects of some neuroleptics in rats with lesioned midbrain raphé and treated with p-chlorphenylalanine. Brain Res. 48, 443–446 (1972)Google Scholar
  26. Kraepelin, E.: Psychiatrie, ein Lehrbuch für Studierende und Ärzte. Leipzig: Barth 1896Google Scholar
  27. McCabe, M. S., Fowler, R. C., Cadoret, R. J., Winokur, G.: Symptom differences in schizophrenia with good and poor prognosis. Am. J. Psychiatry 128, 1239–1243 (1972)Google Scholar
  28. Mehl, E., Weber, L.: Affinity chromatography for subfractionation of 5-hydroxytryptamine-, LSD-binding proteins from cerebral and nerve-ending membranes. In: Advances in biochemical psychopharmacology, Vol. 11, E. Costa, G. L. Gessa, and M. Sandler, eds., pp. 105–108. New York: Raven Press 1974Google Scholar
  29. Mehl, E., Weber, L.: Purification of serotonin- and LSD-binding proteins from synaptic membranes. In: Biochemistry of sensory functions, 25. Mosbacher Colloquium, L. Jaenicke, ed., pp. 593–595 Heidelberg: Springer Verlag 1974Google Scholar
  30. Mehl, E.: Molecular properties of a putative serotonin receptor protein of nerve-ending membranes. Exp. Brain Res. [Suppl.] 23, 139 (1975)Google Scholar
  31. N.I.M.H. Psychopharmacology Service Center Collaborative Study Group: Phenothiazine treatment in acute schizophrenia. Arch. Gen. Psych. 10, 246–261 (1964)Google Scholar
  32. Osmond, H., Smythies, J. R.: Schizophrenia: a new approach. J. Ment. Sci. 98, 309–315 (1952)Google Scholar
  33. Parizek, J., Hassler, R., Bak, I. J.: Light and electron microscopic autoradiography of substantia nigra of rat after intraventricular administration of tritium labeled norepinephrine, serotonin, dopamine and the precursors. Z. Zellforsch. 115, 137–148 (1971)Google Scholar
  34. Pollin, W., Cardon, P. V., Kety, S.: Effects of amino acid feedings in schizophrenic patients treated with iproniazid. Science 133, 104–105 (1961)Google Scholar
  35. Post, R. M., Fink, E., Carpenter, W. T., Jr., Goodwin, F. K.: Cerebrospinal fluid amine metabolites in acute schizophrenia. Arch. Gen. Psych. 32, 1063–1069 (1975)Google Scholar
  36. Robins, E., Guze, S. B.: Establishment of diagnostic validity in psychiatric illness: its application to schizophrenia. Am. J. Psychiatry 126, 983–987 (1970)Google Scholar
  37. Rossum, v. J. M.: The significance of dopamine receptor blockade for the action of neuroleptic drugs. Neuropsychopharmacology 5, 321–329 (1966)Google Scholar
  38. Rüther, E., Schilkrut, R., Ackenheil, M., Eben, E., Hippius, H.: Clinical and biochemical parameters during neuroleptic treatment. I. Investigations with haloperidol. Pharmakopsychiatr. 9, 33–36 (1976)Google Scholar
  39. Seeman, P., Chau-Wong, M., Tedesco, J., Wong, K.: Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc. Natl. Acad. Sci. U.S.A. 72, 4376–4380 (1975)Google Scholar
  40. Singh, K. S. P., Misra, S. S., Bhargava, K. P.: 5-Hydroxytryptamine content of cerebrospinal fluid in leprosy. Nature (London) 206, 206–207 (1965)Google Scholar
  41. Stephens, J. H., Astrup, C.: Prognosis in “process” and “nonprocess” schizophrenia. Am. J. Psychiatry 119, 945–953 (1963)Google Scholar
  42. Taylor, M. A., Abrams, R.: Manic-depressive illness and good prognosis schizophrenia. Am. J. Psychiatry 132, 741–742 (1975)Google Scholar
  43. Tebēcis, A. K., Di Maria, A.: A re-evaluation of the mode of action of 5-hydroxytryptamine on lateral geniculate neurons: comparison with catecholamines and LSD. Exp. Brain Res. 14, 480–493 (1972)Google Scholar
  44. Vaillant, G.: The prediction of recovery in schizophrenia. J. Nerv. Ment. Dis. 135, 534–543 (1962)Google Scholar
  45. Wyatt, R. J., Vaughan, T., Galanter, M., Green, R., Kaplan, J.: Behavioral changes of chronic schizophrenic patients given L-5-hydroxytryptophan. Science 177, 1124–1126 (1972)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • E. Mehl
    • 1
  • E. Rüther
    • 2
  • J. Redemann
    • 1
  1. 1.Neurochemische AbteilungMax-Planck-Institut für PsychiatrieMünchen 40Federal Republic of Germany
  2. 2.Universitäts-NervenklinikMünchenFederal Republic of Germany

Personalised recommendations