Advertisement

Psychopharmacology

, Volume 51, Issue 1, pp 81–84 | Cite as

The inhibitory effect of intraventricular administration of serotonin on spontaneous motor activity of rats

  • R. A. Green
  • J. C. Gillin
  • R. J. Wyatt
Animal Studies

Abstract

Spontaneous motor activity was studied following injection of 1, 10 and 50 μg of serotonin (5-HT) into the lateral ventricle of chronically cannulated rats. During the first 15 min, the rats receiving the higher doses of 5-HT showed significant decrements (P<0.01) in motor activity compared to saline controls. No activation was observed in either group. After 20 min, no significant differences for any treatment condition compared to saline controls were observed. It is concluded that a principal effect of directly increasing brain 5-HT concentration is to decrease activity. Possible mechanisms for this effect are discussed.

Key words

Carbidopa Serotonin Activity Intraventricular 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghajanian, G. K.: Influence of drugs on the firing of serotonin-containing neurons in brain. Fed. Proc. 31, 91–96 (1972)Google Scholar
  2. Aghajanian, G. K., Graham, A. W., Sheard, M. H.: Serotonin-containing neurons in brain: depression of firing by monoamine oxidase inhibitors. Science 196, 1100–1102 (1970)Google Scholar
  3. Ashcroft, G. W., Eccleston, D., Crawford, T. B. B.: 5-hydroxyindole metabolism in rat brain. A study of intermediate metabolism using the technique of tryptophan loading-I. J. Neurochem. 12, 484–492 (1965)Google Scholar
  4. Bogdanski, D. F., Weissbach, J., Udenfriend, S.: Pharmacological studies with the serotonin precursor, 5-hydroxytryptophan. J. J. Pharmacol. 122, 182–194 (1958)Google Scholar
  5. Bose, S., Bailey, P. T., Thoa, N. B., Pradhan, S. N.: Effects of 5-hydroxytryptophan on self-stimulation in rats. Psychopharmacologia (Berl.) 36, 255–262 (1974)Google Scholar
  6. Bronzino, J. D., Morgane, P. J., Stern, W. C.: EEG synchronization following application of serotonin to area postrema. Amer. J. Physiol. 223, 376–383 (1972)Google Scholar
  7. Corrodi, H. K., Fuxe, K., Hökfelt, T.: Replenishment by 5-hydroxytryptophan of the amine stores in the central 5-hydroxytryptamine neurons after depletion induced by reserpine or by an inhibitor of monoamine synthesis. J. Pharm. Pharmacol. 19, 433–438 (1967)Google Scholar
  8. Dement, W., Zarcone, V., Ferguson, J., Cohen, M., Pivik, T., Barchas, J.: Some parallel findings in schizophrenic patients and serotonin depleted cats. In: Schizophrenia: Current concepts and research, D. V. Siva Sankar, ed., pp. 775–811. Hicksville, New York: PJD Publications 1969Google Scholar
  9. Everett, G. M.: Effect of 5-HTP on brain levels of dopamine, norepinephrine, and serotonin in mice. In: Advances in biochemical pharmacology, vol. X, E. Costa, G. L. Gessa, and M. Sandler, eds., pp. 261–262. New York: Raven Press 1974Google Scholar
  10. Fuxe, K., Butcher, L., Engel, J.: Dl-5-HTP induced changes in central monoamine neurons after decarboxylase inhibition. J. Pharm. Pharmacol. 23, 420–424 (1971)Google Scholar
  11. Fuxe, K., Owman, C.: Cellular localization of monoamines in the area postrema of certain mammals. J. comp. Neurol. 215, 337–354 (1965)Google Scholar
  12. Jouvet, M.: Biogenic amines and the states of sleep. Science 163, 32–41 (1969)Google Scholar
  13. Koe, B. K., Weissman, A.: p-Chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. exp. Ther. 154, 449–516 (1966)Google Scholar
  14. Koella, W. P.: What is the functional role of central nervous serotonin? Neurosci. Res. 2, 229–251 (1969)Google Scholar
  15. Koella, W. P., Czicman, J. S.: Mechanism of the EEG-synchronizing action of serotonin. Amer. J. Physiol. 211, 926–934 (1966)Google Scholar
  16. Koella, W. P., Feldstein, A., Czicman, C. S.: The effect of parachlorophenylalanine on the sleep of cats. Electroenceph. clin. Neurophysiol. 25, 481–490 (1968)Google Scholar
  17. Modigh, K.: Central and peripheral effects of 5-hydroxytryptophan on motor activity in mice. Psychopharmacologia (Berl.) 23, 48–54 (1972)Google Scholar
  18. Myers, R. D., Yaksh, T. L.: Feeding and temperature responses in the unrestrained rat after injections of cholinergic and aminergic substances into the cerebral ventricles. Physiol. Behav. 3, 917–928 (1968)Google Scholar
  19. Poschel, B. P. H., Ninteman, F. W.: Excitatory effects of 5-HTP on intracranial self-stimulation following MAO blockade. Life Sci. 7, 317–323 (1968)Google Scholar
  20. Stein, L., Wise, C. D.: Serotonin and behavioral inhibition. In: Advances in biochemical psychopharmacology, vol. XI, E. Costa, G. L. Gessa, and M. Sandler, eds., pp. 281–291. New York: Raven Press 1974Google Scholar
  21. Winer, B. J.: Statistical principles in experimental design. New York: McGraw-Hill Book Comp. 1962Google Scholar
  22. Wyatt, R. J.: The serotonin-catecholamine dream bicycle: a clinical study. Biol. Psychiat. 5, 33–64 (1972)Google Scholar
  23. Wyatt, R. J., Engelman, K., Kupfer, D. J., Fram, D. H., Sjoerdsma, A., Snyder, F.: Effects of L-tryptophan (a natural sedative) on human sleep. Lancet 1970II, 842–846Google Scholar
  24. Wyatt, R. J., Engelman, K., Kupfer, D. J., Scott, J., Sjoerdsma, A., Snyder, F.: Effects of para-chlorophenylalanine on sleep in man. Electroenceph. clin. Neurophysiol. 27, 529–532 (1969)Google Scholar
  25. Wyatt, R. J., Gillin, J. C.: The development of tolerance and dependence to endogenous neurotransmitters. In: Biochemical mechanisms of adaptation, A. Mandell, ed., pp. 47–59. New York: Raven Press 1974Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • R. A. Green
    • 1
  • J. C. Gillin
    • 1
  • R. J. Wyatt
    • 1
  1. 1.Laboratory of Clinical Psychopharmacology, Division of Special Mental Health Research, National Institute of Mental HealthSaint Elizabeth's HospitalWashington, D.C.U.S.A.

Personalised recommendations