, Volume 31, Issue 2, pp 131–141 | Cite as

Aeroacoustics of musical instruments

  • Avraham Hirschberg
  • Xavier Pelorson
  • Joël Gilbert


Musical sound can be generated from numerical solutions obtained from simple physical models of wind-instruments. We call such synthesizers ‘virtual instruments’. Crude caricatures capture the global oscillation behaviour of original instruments, providing the musician with a means of expression comparable to that obtained when playing real instruments. Music is, however, produced by details of the flow which correspond to much smaller temporal and spatial scales than the control of the global oscillation. This suggests that one has to split the physical model into two distinct parts: a simple numerical oscillator followed by a complex sound production module, driven by the output of the first module. We illustrate the background of this idea by a discussion of the clarinet, the human voice, and the trombone.

Key words

Wind instruments Virtual instruments Voice production Aeroacoustics 


Mediante semplici modelli fisici di strumenti musicali a fiato e loro soluzioni numeriche si può generare il suono. Si ottengono così sintetizzatori che vengono chiamati ‘strumenti virtuali’.

Anche la più elementare modellistica può simulare il comportamento oscillatorio globale fornendo al musicista un mezzo con cui esprimersi in modo paragonabile all'uso dello strumento originale. La musica, comunque, viene generata da fenomeni fluidodinamici che corrispondono a scale temporali e spaziali molto piccole rispetto all'oscillazione globale. Se ne deduce che il modello fisico può essere analizzato in due parti distinte: una semplice simulazione numerica dell'oscillazione globale seguita da un modello anche complesso per la produzione del suono che a sua volta è guidato dai risultati precedenti. Si illustrano le basi teoriche di questa formulazione, e si discutono alcuni risultati riguardanti il clarinetto, la voce umana e il trombone.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fletcher, N. and Rossing, J. The Physics of Musical Instruments. Springer-Verlag, New York, 1991.Google Scholar
  2. 2.
    Dalmont, J.P., Gazengel, B., Gilbert, J. and Kergomard, J., ‘Some aspects of tuning and clean intonation in woodwind’, accepted for publication in Applied Acoustics.Google Scholar
  3. 3.
    Resonans: Software for wind-instrument design, developed at the Laboratoire d'Acoustique de I'Université du Maine (Le Mans, France) in collaboration with the IRCAM (Paris, France), distributed by CTTM (Le Mans).Google Scholar
  4. 4.
    Powell, A., ‘On edge tones and associated phenomena’, Acoustica 3 (1953) 233–243.Google Scholar
  5. 5.
    Cremer, L. and Ising, H., “Die selbsterregten Schwingungen von Orgelpfeifen’, Acoustica 19 (1967–68) 143–153.Google Scholar
  6. 6.
    Backus, J., The Acoustical Foundations of Music, Norton, New York 1969.Google Scholar
  7. 7.
    Nederveen, C.J., Acoustical Aspects of Woodwind Instruments, Frits Knuf, Amsterdam, 1969.Google Scholar
  8. 8.
    Benade, A.H., Fundamentals of Musical Acoustics, Dover, New York, 1990.Google Scholar
  9. 9.
    Elder, S., ‘On the mechanism of sound production in organ pipes’, J. Acoust. Soc. Am. 54 (1973) 1554–1564.Google Scholar
  10. 10.
    Coltman, J., ‘Jet drive mechanism in edge tones and organ pipes’, J. Acoust. Soc. Am., 60 (1976) 725–733.Google Scholar
  11. 11.
    Elliot, S.J. and Bowster, J.M., ‘Regeneration in brass wind instruments’, J. Sound Vib., 83 (1982) 181–217.Google Scholar
  12. 12.
    Ishizaka, K. and Matsudaira, M., Fluid Mechanical Consideration of Vocal Cord Vibrations. Speech Research Laboratory Monograph no 8, S.B., U.S.A., 1972.Google Scholar
  13. 13.
    Weavers, D.S., ‘Flow-induced vibrations in valves operating at small opening’, In: Vandasher, E. and Rockwell, D. (eds.) Practical Experience with Flow Induced Vibrations, Springer-Verlag, Berlin, 1980 pp. 351–373.Google Scholar
  14. 14.
    Kolkman, P.A., Flow-induced Gate Vibrations, Delft Hydrolic-Lab. publication no 164, Delft, The Netherlands 1976.Google Scholar
  15. 15.
    McIntyre, M., Schumacher, R. and Woodhouse, J., ‘On the oscillations of musical instruments’, J. Acoust. Soc. Am., 74 (1983) 1325–1345.Google Scholar
  16. 16.
    Rideout, E., ‘Yamaha VL1 virtual acoustic synthesizer’, Keyboard, 20 (1994) 104–118.Google Scholar
  17. 17.
    Rocchesso, D. and Turra, F., ‘A generalized excitation for real-time sound synthesis by physical models’, In: Friberg, A., Invarsson, J., Jansson, E. and Sunberg, J. (eds.), SMAC 93, Pub. Royal Swedish Academy of Music no. 79, Stockholm, Sweden, 1993, pp. 584–588.Google Scholar
  18. 18.
    Magalotti, R., Borin, G. and De Poli, G., ‘A new kind of dipole source for time-domain simulation of flute-like instruments’, In: Proceedings of the International Symposium on Musical Acoustics, Dourdan, France, 1995, pp. 490–495.Google Scholar
  19. 19.
    Hirschberg A. and Kergomard J. (eds.), Mechanics of Musical Instruments, to be published as Lecture Notes of International Centre for Mechanical Sciences (CISM), Udine, Italy, 1995.Google Scholar
  20. 20.
    Verge, M.P., ‘Aero-acoustics of Confined Jets: with Applications to the Physical Modeling of Recorder-like Instruments’, PhD thesis, Eindhoven University of Technology, 1995.Google Scholar
  21. 21.
    Ducasse, E., ‘Modélisation d'instruments de musique pour la synthèse sonore: application aux instruments à vent’, Sup. J. Phys. Colloque de Physique, 51 (1990) C2-837-840.Google Scholar
  22. 22.
    Gazengel, B., Caractérisation Objective de la Qualité de Justesse, de Timbre et d'Émission des Instruments à Vent, à Anche, Simple, PhD thesis, Laboratoire d'Acoustique de l'Université du Maine, Le Mans, France, 1994.Google Scholar
  23. 23.
    Sommerfeld, S.D. and Strong, W.J., ‘Simulation of a player-clarinet system’, J. Acoust. Soc. Am., 83 (1988) 1908–1918.Google Scholar
  24. 24.
    Schumacher, R.T. ‘Ab initio calculations of the oscillations of a clarinet’, Acustica, 48 (1981) 71–85.Google Scholar
  25. 25.
    Hirschberg, A., van de Laar, R.W.A., Marrou-Maurières, J.P., Wijnands, A.P.J., Dane, H.J., Kruijswijk, S.G. and Houtsma, A.J.M., ‘A quasi-stationary model of air flow in the reed channel of single-rod woodwind instruments, Acustica, 70 (1990) 146–154.Google Scholar
  26. 26.
    van Zon, J., Gilbert, J. and Wijnands, A.P.J., ‘Flow through the reed channel of a single reed music instrument’, Sup. J. Phys. Colloque de Physique, 51 (1990) C2-821-824.Google Scholar
  27. 27.
    Hirschberg, A., Gilbert, J., Wijnands, A.P.J. and Valkering, A.M.C., ‘Musical aero-acoustics of the clarinet’, Journal de Physique IV, Colloque C5 Supplément au Journal de Physique III, 4 (1994) C5-559-568.Google Scholar
  28. 28.
    Gilbert, J., Etude des Instruments de Musique à Anche Simple, PhD thesis, Laboratoire d'Acoustique de l'Université du Maine, Le Mans, France, 1991.Google Scholar
  29. 29.
    Grand, N., Gilbert, J. and Laloé, F., ‘Oscillation threshold of woodwind instruments’. In preparation.Google Scholar
  30. 30.
    Wijnands, A.P.J. and Hirschberg, A., ‘Influence of a pipe neck downstream of a double reed’, In: Proceedings of the International Symposium on Musical Acoustics, Dourdan, France, 1995, pp. 148–152.Google Scholar
  31. 31.
    Pelorson, X., Hirschberg, A., van Hassel, R.R., Wijnands, A.P.J. and Auregan, Y., ‘Theoretical and experimental study of quasisteady-flow separation within the glottis during phonation. Application to a modified two-mass model’, J. Acoust. Soc. Am. 96 (1994) 3416–3431.Google Scholar
  32. 32.
    Pelorson, X., Hirschberg, A., Wijnands, A.P.J. and Bailliet, H., ‘Description of the flow through in-vitro models of the glottis during phonation’, Acta Acustica, 3 (1995) 191–202.Google Scholar
  33. 33.
    Hirschberg, A., Pelorson, X., Hofmans, G.C.J. van Hassel, R.R. and Wijnands, A.P.J., ‘Starting transient of the flow through an in-vitro model of the vocal folds’, In: Fletcher, N. and Davies, P. (eds.) Controlling Chaos and Complexity, Proceedings of Vocal Fold Physiology Conference, Sydney, Australia, 1995.Google Scholar
  34. 34.
    Strong, W.J., Dudley, D.J. and Copley, D., ‘Simulation of a player-trumpet system’, In: Friberg, A., Invarson, J., Janson. E. and Sunberg, J. (eds.), SMAC 93, Pub. Royal Swedish Academy of Music, no. 79, Stockholm, Sweden, 1993, pp. 520–524.Google Scholar
  35. 35.
    Yoshikawa, S. and Plitnik, G.R., ‘A preliminary investigation of brass player's lip behaviour’, J. Acoust. Soc. Jn(E), 14 (1993) 449–451.Google Scholar
  36. 36.
    Adachi, S. and Sato, M., ‘Time-domain simulation of sound production in the brass instrument’, J. Acoust. Soc. Am., 97 (1995) 3850–3861.Google Scholar
  37. 37.
    Hirschberg, A., Gilbert, J., Msallam, R. and Wijnands, A.P.J., ‘Shock waves in trombones’, accepted for publication by J. Acoust. Soc. Am. (1995).Google Scholar
  38. 38.
    Crighton, D., Dowling, A., Ffowcs Williams, J., Heckl, M. and Leppington, F., Modern Methods in Analytical Acoustics, Springer-Verlag, London, 1992.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Avraham Hirschberg
    • 1
  • Xavier Pelorson
    • 2
  • Joël Gilbert
    • 3
  1. 1.Eindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Institut de la Communication Parlée, URA-CNRS 368GrenobleFrance
  3. 3.Laboratoire d'Acoustique de l'Université du MaineURA-CNRS 1101Le MansFrance

Personalised recommendations