Advertisement

Journal of Sol-Gel Science and Technology

, Volume 6, Issue 2, pp 127–138 | Cite as

Some significant advances in sol-gel processing of dense structural ceramics

  • Sridhar Komarneni
Article

Abstract

This review deals with the solution-sol-gel processing of some structural ceramics such as alumina, zirconia, mullite and cordierite and brings out the most significant advances in the preparation of dense ceramics. In the Al2O3 system, seeding of gels with α-Al2O3 and other isostructural seeds led not only to lower crystallization temperature but also enhanced densification with refined microstructure through solid-state epitaxy. This breakthrough of seeding has led to improved abrasive grains with large commercial market. Although highly dense, partially stabilized zirconia ceramics were prepared using monodisperse and spherical or nanophase zirconia sol-gel powders, no commercial applications seem to have been realized thus far. In the Al2O3−SiO2 system, compositionally different sol-gel nanocomposites (diphasic gels) led to enhanced densification of mullite at lower temperatures because of the occurrence of densification and crystallization processes almost simultaneously. Mullite powders derived from the diphasic gel route are a breakthrough and are now commercially marketed by Chichibu Cement Company. Highly dense cordierite was prepared by using three sols, i.e., the compositionally different sol-gel nanocomposites in an analogous manner to that of mullite. Although this process appears to be highly cost-effective, especially for the fabrication of substrates, it has not yet been utilized for commercial applications. The use of sol-gel nanocomposites in the processing of various ceramics is expected to be fully exploited in the future.

Keywords

alpha alumina zirconia mullite cordierite sol-gel nanocompositer diphasic gels 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Geffcken and E. Berger, Dtsch. Reichspatent 736, 411 (1939) (Janaer Glaswerk Schott and Gen., Jena., G. D. R.).Google Scholar
  2. 2.
    W. Geffcken, Glastech, Ber. 24, 143 (1951).Google Scholar
  3. 3.
    H. Schroeder, Opt. Acta 9, 249 (1962).Google Scholar
  4. 4.
    H. Schroeder, Phys. Thin Films 87 (1969).Google Scholar
  5. 5.
    H. Dislich, Angew, Chem., Int. Ed. Engl. 10, 363 (1971).Google Scholar
  6. 6.
    J.P. McBride, Preparation of uO2 Microspheres by Sol-Gel Techniques, Report ONRL-3874 (1966).Google Scholar
  7. 7.
    M.E.A. Hermans, Sci. Ceram. 5, 523 (1970).Google Scholar
  8. 8.
    M.A. Leitheiser and H.G. Sowman, U.S. Patent No. 4,314,827 (1984).Google Scholar
  9. 9.
    R. Roy and E.F. Osborn, Am. Mineral 39 853 (1954).Google Scholar
  10. 10.
    R. Roy, J. Am. Cer. Soc. 52, 344 (1956).Google Scholar
  11. 11.
    F.De Korosy, Am. Cer. Soc. Bull. 20, 162 (1941).Google Scholar
  12. 12.
    J.L. Woodhead, Silicates Industrials 191 (1972).Google Scholar
  13. 13.
    R.A. Roy and R. Roy, Mat. Res. Bull. 19, 169 (1984).Google Scholar
  14. 14.
    R. Roy, S. Komarneni, and D.M. Roy, in Better Ceramics Through Chemistry, edited by C.J. Brinker et al., ed. Mat. Res. Soc. Symp. Proc. (Elsevier Science Publishers, New York, 1984), Vol. 32, pp. 347–359.Google Scholar
  15. 15.
    D.W. Hoffman, R. Roy, and S. Komarneni, J. Mat. Lett. 2, 245 (1984).Google Scholar
  16. 16.
    D.W. Hoffman, S. Komarneni, and R. Roy, J. Mat. Sci. Lett., 3, 349 (1984).Google Scholar
  17. 17.
    S. Komarneni, J. Mat. Chem., 2, 1219 (1992).Google Scholar
  18. 18.
    S. Komarneni, New Ceramics (in Japanese) 2, 89 (1989).Google Scholar
  19. 19.
    M.G. Schwabel, Am. Cer. Soc. Bull. 70, 1596 (1991).Google Scholar
  20. 20.
    B.E. Yoldas, Am. Cer. Soc. Bull. 54, 289 (1975).Google Scholar
  21. 21.
    M. Kumagai and G.L. Messing, J. Am. Cer. Soc. 67, 231 (1984).Google Scholar
  22. 22.
    M. Kumagai and G.L. Messing, J. Am. Cer. Soc. 68 500 (1985).Google Scholar
  23. 23.
    Y. Suwa, R. Roy, and S. Komarneni, J. Am. Cer. Soc. 68, C-238 (1985).Google Scholar
  24. 24.
    Y. Suwa, S. Komarneni, and R. Roy, J. Mat. Sci. Lett., 5, 21 (1986).Google Scholar
  25. 25.
    R. Roy, Y. Suwa, and S. Komarneni, in Science of Ceramic Chemical Processing, edited by L.L. Hench and D.R. Ulrich ed. (Wiley, New York, 1986), p. 247.Google Scholar
  26. 26.
    Y. Suwa, R. Roy, and S. Komarneni, Mat. Sci. Eng. 83, 151 (1986).Google Scholar
  27. 27.
    W.A. Yarbrough and R. Roy, J. Mat. Res. 2, 494 (1987).Google Scholar
  28. 28.
    S. Komarneni, Y. Suwa, and R. Roy, J. Mat. Sci. Lett. 6, 525 (1987).Google Scholar
  29. 29.
    T.E. Cottinger, R.H. van de Merwe, and R. Bauer, U.S. Patent No. 4,623,364 (1986).Google Scholar
  30. 30.
    T.E. Cottinger, R.H. van de Merwe, R. Bauer, and W.A. Yarbrough, U.S. Patent No. 5,395,407 (1995).Google Scholar
  31. 31.
    G. Urretavizcaya and J.M. Porto Lopez, Mat. Res. Bull. 27, 375 (1992).Google Scholar
  32. 32.
    C.S. Oh, S.C. Choi, and E.-S. Lee, Yoop Hakhoechi 30, 1039 (1993).Google Scholar
  33. 33.
    Mitsubishi Mining Company (personal communication).Google Scholar
  34. 34.
    K.S. Mazdiyasni, C.T. Lynch, and J.S. Smith, J. Am. Cer. Soc. 50, 532 (1967).Google Scholar
  35. 35.
    W.H. Rhodes, J. Am. Ceram. Soc. 64, 19 (1981).Google Scholar
  36. 36.
    M.A.C.G. Van der Graaf, K. Keizer, and A.J. Burggraaf, Science of Ceramics, edited by H. Hausner (DKG Weiden, 1980), Vol. 10, p. 83.Google Scholar
  37. 37.
    A.J.A. Winnubst, K. Keizer, and A.J. Burggraaf, J. Mat. Sci. 18, 1958 (1983).Google Scholar
  38. 38.
    B. Fegley, Jr. and E.A. Barringer, in Better Ceramics Through Chemistry Mat. Res. Soc. Symp. Proc., edited by C.J. Brinker, ed. (Elsevier, NY, 1984), Vol. 32, pp. 187–197.Google Scholar
  39. 39.
    B. Fegley, Jr., P. White, and H.K. Bowen, Am. Cer. Soc. Bull. 64, 1115 (1985).Google Scholar
  40. 40.
    T.L. Wen, V. Herbert, S. Vilminot, and J.C. Bernier, J. Mat. Sci. 26, 3787, (1991).Google Scholar
  41. 41.
    T. Kosmac, D. Kolar, V. Krasevec, and R. Gopalakrishnan, in Science of Sintering, edited by D.P. Uskokovic, H. Palmour, III, and R.M. Spriggs, (Plenum Press, New York, 1989), pp. 141–147.Google Scholar
  42. 42.
    S.D. Ramamurthi, Z. Xu, and D.A. Payne, J. Am. Cer. Soc., 73, 2760 (1990).Google Scholar
  43. 43.
    D.L. Bourell, Parimal, and W. Kaysser, J. Am. Cer. Soc. 76, 705 (1993).Google Scholar
  44. 44.
    A.J.A. Winnubst, W.F.M. Groot Zevert, S.S.A.M. Theunissen, and A.J. Burggraaf, Mat. Sci. Eng. A109, 215 (1989).Google Scholar
  45. 45.
    S. Somiya and Y. Hirata, Am. Cer. Soc. Bull. 70, 1624 (1991).Google Scholar
  46. 46.
    H. Schneider, K. Okada, and J.A. Pask, in Mullite and Mullite Ceramics (John Wiley, New York, 1994), p. 251.Google Scholar
  47. 47.
    R. Roy and E.F. Osborn, Am. Min. 39, 853 (1954).Google Scholar
  48. 48.
    S. Aramaki and R. Roy, J. Am. Cer. Soc. 45, 229 (1962).Google Scholar
  49. 49.
    S. Aramaki and R. Roy, Am. Min. 48, 1322 (1963).Google Scholar
  50. 50.
    S. Otani and A. Kojima, Kogyo Kagaku Zasshi 67, 1509 (1964).Google Scholar
  51. 51.
    K.S. Mazdiyasni and L.M. Brown, J. Am. Cer. Soc. 55, 548 (1972).Google Scholar
  52. 52.
    S. Prochazka and F.J. Klug, J. Am. Cer. Soc. 66, 874 (1983).Google Scholar
  53. 53.
    B.E. Yoldas, Am. Cer. Soc. Bull. 59, 479 (1980).Google Scholar
  54. 54.
    D.W. Hoffman, R. Roy, and S. Komarneni, J. Am. Cer. Soc. 67, 468 (1984).Google Scholar
  55. 55.
    S. Komarneni, Y. Suwa, and R. Roy, J. Am. Cer. Soc. 69, C-155 (1986).Google Scholar
  56. 56.
    R. Roy and S. Komarneni, U.S. Patent No. 4,828,031 (1989).Google Scholar
  57. 57.
    S. Komarneni and R. Roy, in Mullite and Mullite Matrix Composites, edited by S. Somiya, R.F. Davis, and J.A. Pask, Ceramic Transactions, (The Am. Cer. Soc., Westerville, OH, 1990), Vol. 6, pp. 209–220.Google Scholar
  58. 58.
    S. Komarneni and L. Rani, in Emerging Optoelectronic Technologies: Proceedings of the Conference on Emerging Opto-electronic Technologies held in Bangalore, India, Dec. 16–20, 1991, edited by A. Selvarajan et al., 1992, pp. 147–150.Google Scholar
  59. 59.
    S. Komarneni, R. Roy, C.A. Fyfe, G.J. Kennedy, and H. Strobl, J. Am. Cer. Soc. 69, C-42 (1986).Google Scholar
  60. 60.
    M.G.M.U. Ismail, Z. Nakai, K. Minegishi, and S. Somiya, Int. J. High Technol. Ceram. 2, 123 (1986).Google Scholar
  61. 61.
    M.G.M.U. Ismail, Z. Nakai, and S. Somiya, J. Am. Cer. Soc. 70, C-7 (1987).Google Scholar
  62. 62.
    W. Wei and J.W. Halloran, J. Am. Cer. Soc. 71, 166 (1988).Google Scholar
  63. 63.
    W. Wei and J.W. Halloran, J. Am. Cer. Soc. 71, 581 (1988).Google Scholar
  64. 64.
    S. Sundaresan and I.A. Aksay, J. Am. Cer. Soc. 74, 2388 (1991).Google Scholar
  65. 65.
    D.X. Li and W.J. Thomson, J. Mat. Res. 5, 1963 (1990).Google Scholar
  66. 66.
    D.X. Li and W.J. Thomson, J. Am. Cer. Soc. 74, 2382 (1991).Google Scholar
  67. 67.
    B.B. Ghate, D.P.H. Hasselman, and R.M. Spriggs, Am. Cer. Soc. Bull. 52, 670 (1973).Google Scholar
  68. 68.
    P.E. Debely, E.A. Barringer, and H.K. Bowen, J. Am. Cer. Soc. 68, C-76 (1985).Google Scholar
  69. 69.
    Y. Kubota and H. Takagi, Sci. Report of Tokyo Soda 31, 11 (1987).Google Scholar
  70. 70.
    Y. Hirata, H. Minamizono, and K. Shimada, Yogyo Kyobaishi 93, 475 (1985).Google Scholar
  71. 71.
    Y. Hirata, K. Sakeda, Y. Matsushita, K. Shimada, and Y. Ishihara, J. Am. Cer. Soc. 72, 995 (1989).Google Scholar
  72. 72.
    M. Mizuno and H. Saito, J. Am. Cer. Soc. 72, 377 (1989).Google Scholar
  73. 73.
    S. Birol, Ad. Cer. Mat. 3, 263 (1988).Google Scholar
  74. 74.
    J.C. Huling and G.L. Messing, J. Am. Cer. Soc. 72, 1725 (1989).Google Scholar
  75. 75.
    J.C. Huling and G.L. Messing, in Better Ceramics Through Chemistry IV, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mat. Res. Soc. Symp. Proc. Pittsburgh, PA, 1990), Vol. 180, pp. 515–526.Google Scholar
  76. 76.
    J.C. Huling and G.L. Messing, J. Am. Cer. Soc. 74, 2374 (1991).Google Scholar
  77. 77.
    J.C. Huling and G.L. Messing, J. Non-Cryst. Solids 147 and 148, 213 (1992).Google Scholar
  78. 78.
    T.J. Mroj, Jr. and J.W. Laughner, J. Am. Cer. Soc. 72 508 (1989).Google Scholar
  79. 79.
    M.D. Sacks, N. Bozkurt, and G.W. Scheiffele, J. Am. Cer. Soc. 74, 2428 (1991).Google Scholar
  80. 80.
    D. Sporn and H. Schmidt, Euro-Ceramics, 1, 120 (1989).Google Scholar
  81. 81.
    M.G.M.U. Ismail, N. Zenjiro, and S. Somiya, in Ceramic Transactions, Vol. 6, pp. 231–241 (1990).Google Scholar
  82. 82.
    M.D. Sacks, H.W. Lee, and J.A. Pask, in Ceramic Transactions, Vol. 6, pp. 167–207 (1990).Google Scholar
  83. 83.
    S. Saruhan, W. Albers, and H. Schneider, J. Mat. Sci. Lett. 12, 1812 (1993).Google Scholar
  84. 84.
    L. Pach, A. Iratni, V. Hrabe, S. Svetik, and S. Komarneni, J. Mat. Sci. 30, 5490 (1995).Google Scholar
  85. 85.
    L. Pach., A. Iratni, V. Kovar, P. Mankos, and S. Komarneni, J. Eur. Cer. Soc. (in press).Google Scholar
  86. 86.
    C. Gensse and U. Chowdhry, in Better Ceramics Through Chemistry II (Proc. Mat. Res. Soc. Symp.), edited by C.J. Brinker, D.E. Clarke, and D.R. Ulrich (Mat. Res. Soc., Pittsburgh, PA, 1986), Vol. 73, p. 693.Google Scholar
  87. 87.
    J.C. Bernier, J.L. Rehspringer, S. Vilminot, and P. Poix, in Better Ceramics Through Chemistry II (Proc. Mat. Res. Soc. Symp.), edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich (Mat. Res. Soc., Pittsburgh, PA, 1986), Vol. 73, p. 129.Google Scholar
  88. 88.
    H. Suzuki, K. Ota, and H. Saito, Yogyo-Kyokai-Shi 95(2), 25 (1987).Google Scholar
  89. 89.
    H. Suzuki, K. Ota, and H. Saito, Yogyo-Kyokai-Shi 95(2), 32 (1987).Google Scholar
  90. 90.
    B.J.J. Zelenski, B.D. Fabes, and D.R. Uhlmann J. Non-Cryst. Solids 82, 307 (1986).Google Scholar
  91. 91.
    B.J.J. Zelenski, M.L. Galiano, and D.R. Uhlmann in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (Wiley, New York, 1988), pp. 855–864.Google Scholar
  92. 92.
    H. Vesteghem, A.R.Di Giampaolo, and A. Dauger, J. Mat. Sci. Lett. 6, 1187 (1987).Google Scholar
  93. 93.
    H. Vesteghem, A.R. Di Giampaoloa, and A. Dauger, in Science of Ceramics 14, 321 (1988).Google Scholar
  94. 94.
    A. Kazakos-Kijowski, S. Komarneni, and R. Roy, in Better Ceramics Through Chemistry III, edited by C.J. Brinker, D.E. Clark, and D.R. Ulrich, pp. 245–250, (1988).Google Scholar
  95. 95.
    A. Kazakos, M.S. Thesis, The Pennsylvania State University, University Park, PA, 16802, p. 115 (1989).Google Scholar
  96. 96.
    A.M. Kazakos, S. Komarneni, and R. Roy, J. Mat. Res. 5, 1095 (1990).Google Scholar
  97. 97.
    S. Komarneni, A.M. Kazakos, and R. Roy, U.S. Patent No. 5,030,592 (1991).Google Scholar
  98. 98.
    R. Roy, S. Komarneni, and W. Yarbrough, in Ultrastructure Processing of Advanced Ceramics, edited by J.D. Mackenzie and D.R. Ulrich (John Wiley & Sons, New York, 1988), p. 571.Google Scholar
  99. 99.
    U. Selvaraj, S. Komarneni, and R. Roy, J. Am. Cer. Soc. 73, 3663 (1990).Google Scholar
  100. 100.
    M. Nogami, S. Ogawa, and K. Nagasaka, J. Mat. Sci. 24, 4339 (1989).Google Scholar
  101. 101.
    G. Karagedov, A. Feltz, and B. Neidnicht, J. Mat. Sci. 26, 6396 (1991).Google Scholar
  102. 102.
    M. Okuyama, T. Fukui, and C. Sakurai, J. Am. Cer. Soc. 75, 153 (1992).Google Scholar
  103. 103.
    J.C. Broudic, S. Vilminot, and J.C. Bernier, Mat. Sci. Eng. A-109, 253 (1989).Google Scholar
  104. 104.
    J. Werckmann, P. Humbert, C. Esnouf, T.C. Broudic, and S. Vilminot, J. Mat. Sci. 28, 5229 (1993).Google Scholar
  105. 105.
    M.H. Han and K.C. Park, Yoop Hakhoechi 27, 777 (1990).Google Scholar
  106. 106.
    F. Babonneau, L. Coury, and J. Livage, J. Non-Cryst. Solids 121, 153 (1990).Google Scholar
  107. 107.
    A. Dauger, A. Lecomte, and H. Vesteghem, J. App. Cryst. 24, 765 (1991).Google Scholar
  108. 108.
    N. Kikuchi, T. Sei, T. Tsuchiya, S. Hayashi, and K. Hayamizu, J. Cer. Soc. Japan (Intl. Ed.) 101, 802 (1993).Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Sridhar Komarneni
    • 1
    • 2
  1. 1.Intercollege Materials Research LaboratoryThe Pennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of AgronomyThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations