Skip to main content
Log in

Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Methanobacterium thermoautotrophicum was found to require sodium for growth and for CO2 reduction to methane. The dependence of the rate of growth and methane formation on the sodium concentration was hyperbolic with an apparent K s for sodium of approximately 1 mM. The findings indicate that sodium has a specific function in the energy metabolism of this bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Brandis A, Thauer RK, Stetter KO (1981) Relatedness of strains ΔH and Marburg of Methanobacterium thermoautotrophicum. Zbl Bakt Hyg I Abt Orig C, in press

  • Caldwell DR, Hudson RF (1974) Sodium, an obligate growth requirement for predominant rumen bacteria. Appl Microbiol 27:549–552

    Google Scholar 

  • Doddema HJ, Hutten TJ, van der Drift C, Vogels GD (1978) ATP hydrolysis and synthesis by the membrane-bound ATP synthetase complex of Methanobacterium thermoautotrophicum. J Bacteriol 136:19–23

    Google Scholar 

  • Doddema HJ, van der Drift C, Vogels GD, Veenhuis M (1979) Chemiosmotic coupling in Methanobacterium thermoautotrophicum: hydrogen-dependent adenosine 5′-triphosphate synthesis by subcellular particles. J Bacteriol 140:1081–1089

    Google Scholar 

  • Dundas IED (1977) Physiology of Halobacteriaceae. In: AH Rose, DW Tempest (eds) Advances in microbial physiology, Vol 15. Academic Press, London New York San Francisco, pp 85–120

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978) Acetate assimilation and the synthesis of alanine, aspartate, and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1977) Stimulation of CO2 reduction to methane by methyl coenzyme M in extracts of Methanobacterium. Biochem Biophys Res Commun 76:790–795

    Google Scholar 

  • Gunsalus RP, Wolfe RS (1978) ATP activation and properties of the methyl coenzyme M reductase system in Methanobacterium thermoautotrophicum. J Bacteriol 135:851–857

    Google Scholar 

  • Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397

    Google Scholar 

  • Miller TL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Microbiol 27:985–987

    Google Scholar 

  • Mountfort DO (1978) Evidence for ATP synthesis driven by a proton gradient in Methanosarcina barkeri. Biochem Biophys Res Commun 85:1346–1351

    Google Scholar 

  • Pate GB, Roth LA (1977) Effect of sodium chloride on growth and methane production of methanogens. Can J Microbiol 23:893–897

    Google Scholar 

  • Reichelt JL, Baumann P (1974) Effect of sodium chloride on growth of heterotrophic marine bacteria. Arch Microbiol 97:329–345

    Google Scholar 

  • Roberton AM, Wolfe RS (1970) Adenosine triphosphate pools in Methanobacterium. J Bacteriol 102:43–51

    Google Scholar 

  • Sauer FD, Erfle JD, Mahadevan S (1980a) Methane production by the membranous fraction of Methanobacterium thermoautotrophicum. Biochem J 190:177–182

    Google Scholar 

  • Sauer FD, Mahadevan S, Erfle JD (1980b) Valinomycin inhibited methane synthesis in Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun 95:715–721

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1979) Nickel, cobalt, and molybdenum requirement for growth of Methanobacterium thermoautotrophicum. Arch Microbiol 123:105–107

    Google Scholar 

  • Schönheit P, Moll J, Thauer RK (1980) Growth parameters (K S; μmax, Y S) of Methanobacterium thermoautotrophicum. Arch Microbiol 127:59–65

    Google Scholar 

  • Silver S (1978) Transprot of cations and anions. In: BP Rosen (ed) Bacterial transport, Marcel Dekker, Inc., New York Basel, pp 221–324

    Google Scholar 

  • Sprott GD, Jarrell KF (1981) K+, Na+, and Mg2+ content and permeability of Methanospirillum hungatei and Methanobacterium thermoautotrophicum. Can J Microbiol 27:444–451

    Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–712

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perski, HJ., Moll, J. & Thauer, R.K. Sodium dependence of growth and methane formation in Methanobacterium thermoautotrophicum . Arch. Microbiol. 130, 319–321 (1981). https://doi.org/10.1007/BF00425947

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425947

Key words

Navigation