Skip to main content
Log in

Products of CO2 fixation and 14C labelling pattern of alanine in Methanobacterium thermoautotrophicum pulse-labelled with 14CO2

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The incorporation of 14CO2 by an exponentially growing culture of the autotrophic bacterium Methanobacterium thermoautotrophicum has been studied. The distribution of radioactivity during 2s–120s incubation periods has been analyzed by chromatography and radioautography. After a 2 s incubation most of the radioactivity of the ethanolsoluble fraction was present in the amino acids alanine, glutamate, glutamine and aspartate, whereas phosphorylated compounds were only weakly labelled. The percentage of the total radioactivity fixed, which was contained in the principal early labelled amino acid alanine, increased in the first 20 s and only then decreased, indicating that alanine is derived from primary products of CO2 fixation.

The labelling patterns of alanine produced during various incubation times have been determined by degradation. After a 2 s 14CO2 pulse, 61% of the radioactivity was located in C-1, 23% in C-2, and 16% in C-3. The results are consistent with the operation of a previously proposed autotrophic CO2 assimilation pathway which involves the formation of acetyl CoA from 2 CO2 via one-carbon unit intermediates, followed by the reductive carboxylation of acetyl CoA to pyruvate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bassham JA, Calvin M (1960) The path of carbon in photosynthesis. In: Ruhland W (ed) Handbuch der Pflanzenphysiologie. Springer, Berlin Heidelberg New York, vol 5, part 1, pp 884–992

    Google Scholar 

  • Bergmeyer HU, Möllering H (1970) Acetat. Bestimmung mit vorgeschalteter Indikatorreaktion. In: HU Bergmeyer (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, vol 2, p 1483

    Google Scholar 

  • Calvin M, Bassham JA (1962) The photosynthesis of carbon compounds. Benjamin, New York

    Google Scholar 

  • Cramer F (1954) Papierchromatographie, 3. ed. Verlag Chemie, Weinheim

    Google Scholar 

  • Czok R, Lamprecht W (1970) Pyruvat, Phosphoenolpyruvat und D-Glycerat-2-Phosphat. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, vol 2, pp 1407–1411

    Google Scholar 

  • Daniels L, Zeikus JG (1978) One-carbon metabolism in methanogenic bacteria: Analysis of short-term fixation products of 14CO2 and 14CH3OH incorporated into whole cells. J Bacteriol 136:75–84

    Google Scholar 

  • Dawson R, Elliot DC, Elliot WH, Jones KM (eds) (1969) Data for biochemical research, 2. ed. Oxford University Press. London, p 526

    Google Scholar 

  • Fuchs G, Stupperich E (1978) Evidence for an incomplete reductive carboxylic acid cycle in Methanobacterium thermoautotrophicum. Arch Microbiol 118:121–125

    Google Scholar 

  • Fuchs G, Stupperich E (1980) Acetyl CoA, a central intermediate of autotrophic CO2 fixation in Methanobacterium thermoautotrophicum. Arch Microbiol 127:267–272

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978a) Acetate assimilation and the synthesis of alanine, aspartate and glutamate in Methanobacterium thermoautotrophicum. Arch Microbiol 117:61–66

    Google Scholar 

  • Fuchs G, Stupperich E, Thauer RK (1978b) Function of fumarate reductase in methanogenic bacteria (Methanobacterium). Arch Microbiol 119:215–218

    Google Scholar 

  • Fuchs G, Stupperich E, Eden G (1980a) Autotrophic CO2-fixation in Chlorobium limicola. Evidence for the operation of a reductive tricarboxylic acid cycle in growing cells. Arch Microbiol 128:64–71

    Google Scholar 

  • Fuchs G, Stupperich E, Jaenchen R (1980b) Autotrophic CO2-fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch Microbiol 128:56–63

    Google Scholar 

  • Goebell H, Klingenberg M (1962) Dunnschlchtchromatographie von Tricarbonsäurezyklus-Substraten mit Autoradiographie. In: Chromatographie-Symposium. II. Société belge des sciences pharmaceutiques, Brüssel, pp 153–165

    Google Scholar 

  • Grassl M (1970) L-Alanin-Bestimmung mit GPT und LDH. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, vol 2, pp 1637–1640

    Google Scholar 

  • Hohorst HJ (1970) L-(+)-Lactat-Bestimmung mit Lactat-Dehydrogenase und NAD. In: Bergmeyer HU (ed) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, vol 2, pp 1425–1429

    Google Scholar 

  • Keltjens JT, Vogels GD (1981) Novel coenzymes of methanogens. In: Dalton H (ed) International Symposium “Microbial growth on C1-compounds”. Heyden & Son, London Philadelphia Rheine, pp 152–158

    Google Scholar 

  • Kornberg HL (1958) The metabolism of C2 compounds in microorganisms. Biochem J 68:535–542

    Google Scholar 

  • Lindley ND, Waites MJ, Quayle JR (1980) A modified pulse-labelling technique for the detection of early intermediates in microbial metabolism: Detection of 14C-Dihydroxyacetone during assimilation of 14C-methanol by Hansenula polymorpha. FEMS Microbiol Letters 8:13–16

    Google Scholar 

  • Oberlies G, Fuchs G, Thauer RK (1980) Acetate thiokinase and the assimilation of acetate in Methanobacterium thermoautotrophicum. Arch Microbiol 128:248–252

    Google Scholar 

  • Quayle JR (1971) The use of isotopes in tracing metabolic pathways. In: Norris JR, Ribbons DW (eds) Methods in microbiology. Academic Press, New York London, vol 6B, pp 157–183

    Google Scholar 

  • Schönheit P, Moll RK (1980) Growth parameters (Ks, μmax, Ys) of Methanobacterium thermoautotrophicum. Arch Microbiol 127: 59–65

    Google Scholar 

  • Simon H, Floss HG (1967) Anwendung von Isotopen in der Organischen Chemie und Biochemie. Springer, Berlin Heidelberg New York, vol 1, pp 23ff

    Google Scholar 

  • Taylor GT, Kelly DP, Pirt SJ (1976) Intermediary metabolism in methanogenic bacteria. In: Schlegel HG, Gottschalk G, Pfennig N (eds) Proceedings of the Symposium “Microbial production and utilization of gases (H2, CH4, CO)”, Akademie der Wissenschaften zu Göttingen E. Goltze Verlag, Göttingen, pp 173–180

    Google Scholar 

  • Trevelyan WE, Procter DP, Harrison JS (1950) Detection of sugars on paper chromatogramms. Nature 166:444–445

    Google Scholar 

  • Uyeda K, Rabinowitz JC (1971) Pyruvate-ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J Biol Chem 246:3120–3125

    Google Scholar 

  • Wolfe RS (1979) Methanogens, a surprising microbial group. Antonie van Leeuwenhoek 45:335–364

    Google Scholar 

  • Zeikus JG, Fuchs G, Kenealy W, Thauer RK (1977) Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum. J Bacteriol 132:604–613

    Google Scholar 

  • Zeikus JG, Wolfe RS (1972) Methanobacterium thermoautotrophicum sp. n., an anaerobic, autotrophic, extreme thermophile. J Bacteriol 109:707–713

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stupperich, E., Fuchs, G. Products of CO2 fixation and 14C labelling pattern of alanine in Methanobacterium thermoautotrophicum pulse-labelled with 14CO2 . Arch. Microbiol. 130, 294–300 (1981). https://doi.org/10.1007/BF00425943

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425943

Key words

Navigation