Advertisement

Archiv für Mikrobiologie

, Volume 62, Issue 4, pp 307–321 | Cite as

Untersuchungen zum Mechanismus der Photoreduktion von Pyridinnucleotid durch Chromatophoren aus Rhodospirillum rubrum

  • K. -D. Lippert
  • J. -H. Klemme
Article

Zusammenfassung

  1. 1.

    Die Effekte von Atebrin, Oligomycin, Rotenon und Dinitrophenol auf den photosynthetischen Elektronentransport in Chromatophoren aus photoheterotroph gewachsenem Rhodospirillum rubrum wurden untersucht.

     
  2. 2.

    Die succinat-abhängige NAD-Photoreduktion und die cyclische Photophosphorylierung werden durch Atebrin in gleichem Maße gehemmt.

     
  3. 3.

    In Gegenwart kleiner Konzentrationen von Atebrin (3 · 10-5m) wird die NAD-Photoreduktion mit reduziertem Dichlorophenolindophenol als Donator stimuliert, während in Gegenwart hoher Konzentrationen von Atebrin (2 · 10-4m) die gleiche Reaktion gehemmt wird.

     
  4. 4.

    Die aerobe Photooxydation von reduziertem Dichlorphenolindophenol wird auch in Gegenwart hoher Atebrin-Konzentrationen stimuliert. Das gleiche trifft zu für die anaerobe Photoreduktion von Fumarat mit reduziertem Dichlorphenolindophenol als Elektronendonator.

     
  5. 5.

    Die aerobe Photooxydation von reduziertem Dichlorphenolindophenol wird durch Dinitrophenol nur in geringem Maße gehemmt. Demgegenüber wird die anaerobe Reaktion mit Fumarat als Elektronenacceptor durch Dinitrophenol stimuliert.

     
  6. 6.

    Die NAD-Photoreduktion mit reduziertem Dichlorphenolindophenol wird durch Oligomycin stimuliert, während die Fumarat-Photoreduktion durch Oligomycin gehemmt wird.

     
  7. 7.

    Die NAD-Photoreduktion mit Succinat bzw. reduziertem Dichlorphenolindophenol als Donator wird durch Dinitrophenol und Rotenon gehemmt. Die succinat-abhängige NAD-Photoreduktion und die NADH-Oxydation mit Cytochrom c werden durch Rotenon in gleichem Maße gehemmt.

     

Studies on the mechanism of photoreduction of pyridinnucleotide by chromatophores of Rhodospirillum rubrum

Summary

  1. 1.

    The effects of atebrine, oligomycin, rotenone, and dinitrophenol on photosynthetic electron transport in chromatophores from photoheterotrophically grown Rhodospirillum rubrum were studied.

     
  2. 2.

    The degrees of inhibition by atebrine of succinate-linked NAD-photoreduction and of cyclic photophosphorylation are nearly identical.

     
  3. 3.

    In the presence of small amounts of atebrine (3 · 10-5m) the NAD-photoreduction at the expense of reduced dichlorophenolindophenol is stimulated, whereas in the presence of high amounts of atebrine (2 · 10-4m) the same reaction is inhibited.

     
  4. 4.

    The aerobic photooxidation of reduced dichlorophenolindophenol is stimulated in the presence of high amounts of atebrine. The same is true in the case of anaerobic photoreduction of fumarate at the expense of reduced dichlorophenolindophenol.

     
  5. 5.

    The aerobic photooxidation of reduced dichlorophenolindophenol is weakly inhibited by dinitrophenol, whereas the anaerobic reaction with fumarate as electron acceptor is stimulated by dinitrophenol.

     
  6. 6.

    The NAD-photoreduction at the expense of reduced dichlorophenolindophenol is stimulated by oligomycin, whereas the photoreduction of fumarate is inhibited by oligomycin.

     
  7. 7.

    The succinate-linked NAD-photoreduction and the NAD-photoreduction at the expense of reduced dichlorophenolindophenol are both inhibited by dinitrophenol and rotenone. The degrees of inhibition by rotenone of succinate-linked NAD-photoreduction and of cytochrome c-linked NADH-oxidation are identical.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Avron, M., and N. Shavit: Inhibitors and uncouplers of photophosphorylation. Biochim. biophys. Acta (Amst.) 109, 317 (1965).Google Scholar
  2. Baltscheffsky, H.: Flavin nucleotides and light-induced phosphorylation in cell-free extracts of Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 40, 1 (1960).Google Scholar
  3. Baltscheffsky, H., and B. Arwidsson: Evidence for two phosphorylation sites in bacterial cyclic photophosphorylation. Biochim. biophys. Acta (Amst.) 65, 425 (1962).Google Scholar
  4. Baltscheffsky, M.: On light-induced phosphorylation and oxidation of reduced diphosphopyridine nucleotide in Rhodospirillum rubrum. Acta chem. scand. 15, 215 (1961).Google Scholar
  5. Bose, S. K., and H. Gest: Electron transport systems in purple bacteria. Hydrogenase and light-stimulated electron transfer reactions in photosynthetic bacteria. Nature (Lond.) 195, 1168 (1962).Google Scholar
  6. ——: Bacterial photophosphorylation: Regulation by redox balance. Proc. nat. Acad. Sci. (Wash.) 49, 337 (1963).Google Scholar
  7. Chance, B., and J. M. Olson: Primary metabolic events associated with photosynthesis. Arch. Biochem. 88, 54 (1960).Google Scholar
  8. Frenkel, A. W.: Light-induced reactions of chromatophores of Rhodospirillum rubrum. Brookhaven Symp. Biol. 11, 276 (1958).Google Scholar
  9. —, and K. Cost: Reduction of mammalian cytochrome c by Rhodospirillum hydrogenase. Nature (Lond.) 195, 1171 (1962).Google Scholar
  10. Garcia, A., L. P. Vernon, and H. Mollenhauer: Properties of Rhodospirillum rubrum subchromatophore particles obtained by treatment with Triton X-100. Biochemistry 5, 2408 (1966).Google Scholar
  11. Hackett, D.: Enzymes of terminal respiration. In: Modern methods of plant analysis, vol. 7 (H. F. Linskens, B. D. Sanwal and M. V. Tracey, Eds.), p. 647. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  12. Hinkson, J. W.: Nicotinamide adenine dinucleotide photoreduction with Chromatium and Rhodospirillum rubrum chromatophores. Arch. Biochem. 112, 478 (1965).Google Scholar
  13. Horio, T., I. Yamashita, and K. Nishikawa: Photosynthetic adenosine triphosphate formation and photoreduction of diphosphopyridine nucleotide with chromatophores of Rhodospirillum rubrum. Biochim. biophys. Acta (Amst.) 66, 37 (1963).Google Scholar
  14. Keister, D. L., and N. Y. Yike: Energy-linked reactions in photosynthetic bacteria I. Succinate-linked ATP-driven NAD+ reduction by Rhodospirillum rubrum chromatophores. Arch. Biochem. 121, 415 (1967).Google Scholar
  15. Klemme, J.-H.: Hydrogenase und photosynthetischer Elektronentransport bei Rhodospirillum rubrum und Rhodopseudomonas capsulata. Diss., Göttingen 1967.Google Scholar
  16. —, u. H. G. Schlegel: Photoreduktion von Pyridinnucleotid durch Chromatophoren aus Rhodopseudomonas capsulata mit molekularem Wasserstoff. Arch. Mikrobiol. 59, 185 (1967).Google Scholar
  17. Massey, V.: The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim. biophys. Acta (Amst.) 34, 255 (1959).Google Scholar
  18. Nozaki, M., K. Tagawa, and D. I. Arnon: Noncyclic photophosphorylation in photosynthetic bacteria. Proc. nat. Acad. Sci. (Wash.) 47, 1334 (1961).Google Scholar
  19. ———: Metabolism of photosynthetic bacteria. II. Certain aspects of cyclic and noncyclic photophosphorylation in Rhodospirillum rubrum. In: Bacterial photosynthesis (H. Gest, A. San Pietro, and L. P. Vernon, Eds.), p. 175. Yellow Springs: Antioch Press 1963.Google Scholar
  20. Sato, H., K. Takahashi, and G. Kikuchi: Inhibition studies of photophosphorylation by Rhodospirillum rubrum chromatophores with particular concerns to antimycin-resistant photophosphorylation in the presence of artificial electron carriers. Biochim. biophys. Acta (Amst.) 112, 8 (1966).Google Scholar
  21. Schlegel, H. G.: Untersuchungen über den Phosphatstoffwechsel der wasserstoff-oxydierenden Bakterien. Arch. Mikrobiol. 21, 127 (1954).Google Scholar
  22. Smith, J. H. C., and A. Benitez: Chlorophylls. In: Modern methods of plant analysis (H. F. Linskens, B. D. Sanwal, and M. V. Tracey, Eds.), vol. 4, p. 179. Berlin-Göttingen-Heidelberg: Springer 1955.Google Scholar
  23. Vernon, L. P.: Photooxidation of cytochrome c by illuminated chromatophores of Rhodospirillum rubrum under anaerobic conditions. Biochim. biophys. Acta (Amst.) 32, 589 (1959).Google Scholar
  24. —: Photooxidation and photoreduction reactions catalyzed by chromatophores of purple photosynthetic bacteria. In: Bacterial Photosynthesis (H. Gest, A. San Pietro, and L. P. Vernon, Eds.), p. 235. Yellow Springs: Antioch Press 1963.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • K. -D. Lippert
    • 1
    • 2
    • 3
    • 4
  • J. -H. Klemme
    • 1
    • 2
    • 3
  1. 1.Institut für MikrobiologieGöttingen
  2. 2.der Gesellschaft für Strahlenforschung mbHMünchen
  3. 3.Institut für Mikrobiologie der Universität GöttingenGöttingenDeutschland
  4. 4.Abt. Biochemie der PflanzenPflanzenphysiologisches Institut der UniversitätGöttingenGermany

Personalised recommendations