Archives of Microbiology

, Volume 149, Issue 5, pp 395–400 | Cite as

A new purple sulfur bacterium from stratified freshwater lakes, Amoebobacter purpureus sp. nov.

  • Barbara Eichler
  • Norbert Pfennig
Original Papers


Six strains of a new purple sulfur bacterium were isolated from the chemocline of four different freshwater lakes. Single cells were spherical to oval, nonmotile and contained gas vacuoles in the central part of the cytoplasm. All strains contained bacteriochlorophyll a and okenone as the major carotenoid. The intracytoplasmic membrane system was of vesicular type. All strains resembled each other in growth conditions and utilization of simple organic carbon sources. The strains were able to grow microaerophilic in the dark, used hydrogen sulfide, elemental sulfur or thiosulfate as electron donor, and lacked assimilatory sulfate reduction. On the basis of all characteristics the new bacterium represents a new species of the genus Amoebobacter, A. purpureus sp. nov.

Key words

Chromatiaceae Gas vacuoles Stratified freshwater lakes Amoebobacter Okenone Bacteriochlorophyll a 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bavendamm W (1924) Die farbiosen und roten Schwefelbakterien des Süß- und Salzwassers. In: Kolkowitz R (ed) Pflanzenforschung. Heft 2. Fischer, Jena, pp 1–157Google Scholar
  2. Caumette P, Schmidt K, Biebl H, Pfennig N (1985) Characterization of a Thiocapsa strain containing okenone as major carotenoid. Syst Appl Microbiol 6:132–136Google Scholar
  3. Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458Google Scholar
  4. Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by nonsulfur purple bacteria. J Cell Comp Physiol 49:25–68Google Scholar
  5. Czeczuga B (1968) Primary production of the purple sulphuric bacteria, Thiopedia rosea Winogr. (Thiorhodaceae). Photosynthetica 2:161–166Google Scholar
  6. Eichler B, Pfennig N (1986) Characterization of a new platelet-forming purple sulfur bacterium, Amoebobacter pedioformis sp. nov. Arch Microbiol 146:295–300Google Scholar
  7. Floßdorf J (1983) A rapid method for the determination of the base composition of bacterial DNA. J Microbiol Meth 1:305–311Google Scholar
  8. Fowler VJ, Pfennig N, Schubert W, Stackebrandt E (1984) Towards a phylogeny of phototrophic purple sulfur bacteria — 16S rRNA oligonucleotide cataloguing of 11 species of Chromatiaceae. Arch Microbiol 139:382–387Google Scholar
  9. Guerrero R, Montesinos E, Pedros-Alio C, Esteve J, Mas J, van Gemerden H, Hofman PAG, Bakker JF (1985) Phototrophic sulfur bacteria in two spanish lakes: Vertical distribution and limiting factors. Limnol Oceanogr 30:919–931Google Scholar
  10. Kämpf C, Pfennig N (1980) Capacity of Chromatiaceae for chemotrophic growth. Specific respiration rates of Thiocystis violaceae and Chromatium vinosum. Arch Microbiol 127:125–135Google Scholar
  11. Koppe F (1923) Die Schlammflora der ostholsteinischen Seen undd des Bodensees. Arch Hydrobiol 14:619–672Google Scholar
  12. Parkin TB, Brock TD (1981) The role of phototrophic bacteria in the sulfur cycle of a meromictic lake. Limnol Oceanogr 26:880–890Google Scholar
  13. Pfennig N (1978) Rhodocyclus purpureus gen. nov. and sp. nov., a ring-shaped, vitamin B12-requiring member of the family Rhodospirillaceae. Int J Syst Bacteriol 28:283–288Google Scholar
  14. Pfennig N, Trüper HG (1981) Isolation of members of the families Chromatiaceae and Chlorobiaceae. In: Starr HP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. A handbook on habitats, isolation and identification of bacteria. Springer, Berlin Heidelberg New York, pp 179–289Google Scholar
  15. Pfennig N, Markham MC, Liaaen Jensen S (1968) Carotenoids of Thiorhodoaceae. 8. Isolation and characterization of a Thiothece, Lamprocystis and Thiodictyon strain and their carotenoid pigments. Arch Microbiol 62:178–191Google Scholar
  16. Schegg E (1971) Produktion und Destruktion in der trophogenen Schicht. Untersuchungen ökologischer Parameter im polytrophen Rotsce und in der mesotrophen Horwer Bucht (Vierwaldstättersee). Schweiz Z Hydrobiol 33:425–537Google Scholar
  17. Schinck B, Pfennig N (1984) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201Google Scholar
  18. Siefert E, Pfennig N (1984) Convenient method to prepare neutral sulfide solution for cultivation of phototrophic sulfur bacteria. Arch Microbiol 139:100–101Google Scholar
  19. Sorokin YuJ (1970) Interrelations between sulphur and carbon turnover in meromictic lakes. Arch Hydrobiol 66:391–440Google Scholar
  20. Steenbergen CLM, Korthals HJ (1982) Distribution of phototrophic microorganisms in the anaerobic and microaerophilic strata of Lake Vechten (The Netherlands). Pigment analysis and role in primary production. Limnol Oceanogr 27:883–895Google Scholar
  21. Utermöhl H (1925) Limnologische Planktonstudien. Arch Hydrobiol [Suppl] Vol 5:1–524Google Scholar
  22. Vetter H (1937) Limnologische Untersuchungen über das Phytoplankton und seine Bezichungen zur Ernährung des Zooplanktons im Schleinsee bei Langenargen am Bodensee. Int Rev Ges Hydrobiol Hydrogr 34:499–561Google Scholar
  23. Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Barbara Eichler
    • 1
  • Norbert Pfennig
    • 1
  1. 1.Fakultät für BiologieUniversität KonstanzKonstanzFederal Republic of Germany

Personalised recommendations