Archives of Microbiology

, Volume 149, Issue 5, pp 389–394 | Cite as

Degradation of diarylethane structures by Pseudomonas fluorescens biovar I

  • B. González
  • I. Olave
  • I. Calderón
  • R. Vicuña
Original Papers


Pseudomonas fluorescens biovar I was isolated from a pulp mill effluent based on its ability to grow on synthetic media containing 1,2-diarylethane structures as the sole carbon and energy source. Analysis of samples taken from cultures of this strain in benzoin or 4,4′-dimethoxybenzoin (anisoin), showed that cleavage between the two aliphatic carbons takes place prior to ring fission. Intermonomeric cleavage was also obtained with crude extracts. Substrates of this reaction were only those 1,2-diarylethane compounds that supported growth of the bacterium. The purification and partial characterization of an enzyme that catalyzes the NADH-dependent reduction of the carbonyl group of benzoin and anisoin is also reported.

Key words

Pseudomonas fluorescens Aromatic catabolism Lignin model compounds Benzoin Anisoin Dihydroanisoin Dehydrogenase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barz W, Weltring K-M (1985) Biodegradation of aromatic extractives of wood. In: Higuchi T (ed) Biosynthesis and biodegradation of wood components. Academic Press, Florida, pp 607–618Google Scholar
  2. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254Google Scholar
  3. Clarke P (1982) The metabolic versatility of Pseudomonads. Antonie van Leeuwenhoek J Microbiol 48:105–130Google Scholar
  4. Clarke PH, Ornston LN (1975) Metabolic pathways and regulation. In: Clarke PH, Richmond MH (eds) Genetics and biochemistry of Pseudomonas. Wiley, London, pp 191–262Google Scholar
  5. Crawford RL (1981) Lignin biodegradation and transformation. Wiley, New YorkGoogle Scholar
  6. Cripps RE (1975) The microbial metabolism of acetophenone: Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species. Biochem J 152:233–241Google Scholar
  7. Cuatrecasas P, Anfinsen CB (1971) Affinity chromatography. In: Jakoby WB (ed) Methods in enzymology, vol 22. Academic Press, New York, pp 345–378Google Scholar
  8. Davis BJ (1964) Disc electrophoresis. II. Method and application to human serum proteins. Ann NY Acad Sci 121:404–427Google Scholar
  9. González B, Merino A, Almeida M, Vicuña R (1986) Comparative growth of natural bacterial isolates on various lignin-related compounds. Appl Environ Microbiol 52:1428–1432Google Scholar
  10. Goycoolea M, Seelenfreund D, Rüttimann C, González B, Vicuña R (1986) Monitoring bacterial consumption of low molecular weight lignin derivatives by high performance liquid chromatography. Enz Microbial Technol 8:213–216Google Scholar
  11. Hopkins RP (1968) Microsomal ring-fission of cis and trans acenaphthene-1,2-diol. Biochem J 108:577–582Google Scholar
  12. Katayama Y, Fukuzumi T (1979a) Bacterial degradation of dimers structurally related to lignin. IV. Metabolism of guaiacylglycerol-β-coniferyl ether by Pseudomonas putida. Mokuzai Gakkaishi 25:367–373Google Scholar
  13. Katayama Y, Fukuzumi T (1979b) Bacterial degradation of dimers structurally related to lignin. III. Metabolism of α-veratryl-β-guaiacylpropionic and D,L-pinoresinol by Pseudomonas putida. Mokuzai Gakkaishi 25:67–76Google Scholar
  14. Keat MJ, Hopper DJ (1975) Aromatic aldehyde dehydrogenase from Pseudomonas putida N.C.I.B. 9869. Biochem Soc Trans 3:385–386Google Scholar
  15. Kergomard A, Renard MF (1986) Action of two strains of Streptomyces on aromatic substrates. Agric Biol Chem 50: 2913–2914Google Scholar
  16. Kern HW, Webb LE, Eggeling L (1984) Characterization of a ligninolytic bacterial isolate: Taxonomic relatedness and oxidation of some lignin related compounds. System Appl Microbiol 5:433–447Google Scholar
  17. Kirk TK, Nakatsubo F (1983) Chemical mechanism of an important cleavage reaction in the fungal degradation of lignin. Biochim Biophys Acta 756:376–384Google Scholar
  18. Krieg NR, Holt GJ (1984) Bergey's manual of systematic bacteriology, 9th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  19. Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: Demonstration of two benzoate pathways. J Bacteriol 115:262–267Google Scholar
  20. Odier E, Rolando Ch (1985) Catabolism of arylglycerol-β-aryl ethers lignin model compounds by Pseudomonas cepacia 122. Biochimie 67:191–197Google Scholar
  21. Pelmont J, Barrelle M, Hauteville M, Gamba D, Romdhane M, Dardas A, Beguin C (1985) A new bacterial dehydrogenase oxidizing the lignin model compound guaiacylglycerol β-O-4-guaiacylether. Biochimie 67:973–986Google Scholar
  22. Samejima M, Saburi Y, Yoshimoto T, Fukuzumi T, Nakazawa T (1985) Catabolic pathway of guaiacylglycerol-β-guaiacylether by Pseudomonas sp. TMY1009. Mokuzai Gakkaishi 31:956–958Google Scholar
  23. Shimada M, Gold MH (1983) Direct cleavage of the vicinial diol linkage of the lignin model compound dihydroanisoin by the basidiomycete Phanerochaete chrysosporium. Arch Microbiol 134:299–302Google Scholar
  24. Skinner FA, Lovelock DW (1979) Identification methods for microbiologists, 2nd edn. Academic Press, New YorkGoogle Scholar
  25. Stachow CS, Stevenson IL, Day D (1967) Purification and properties of nicotinamide adenine dinucleotide phosphate-specific benzaldehyde dehydrogenase from Pseudomonas. J Biol Chem 242:5294–5300Google Scholar
  26. Stanier RY, Palleroni NJ, Doudoroff M (1966) The acrobic Pseudomonas: a taxonomic study. J Gen Microbiol 43:159–271Google Scholar
  27. Sutherland JB, Crawford DL, Pometto III AL (1983) Metabolism of cinnamic, p-coumaric and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257Google Scholar
  28. Takase I, Omori T, Minoda Y (1986) Microbial degradation products from biphenyl-related compounds. Agric Biol Chem 50:681–686Google Scholar
  29. Tittmann U, Lingens F (1980) Degradation of biphenyl by Arthrobacter simplex, strain BPA. FEMS Microb Lett 8:255–258Google Scholar
  30. Trojanowski J, Haider K, Sundman V (1977) Decomposition of 14C-labelled lignin and phenols by a Nocardia sp. Arch Microbiol 114:149–153Google Scholar
  31. Watabe T, Akamatsu K (1975) Oxidative cleavage of the ethylenic linkage of stilbene by rabbit liver microsomes. Biochem Pharmacol 24:442–444Google Scholar
  32. Weber K, Osborn M (1971) The reliability of molecular weight determinations by dodecyl sulfate polyacrylamide. J Biol Chem 244:4406–4412Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • B. González
    • 1
  • I. Olave
    • 1
  • I. Calderón
    • 2
  • R. Vicuña
    • 1
  1. 1.Laboratorio de Bioquímica, Departamento de Biología Celular, Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile
  2. 2.Laboratorio de Microbiología, Departamento de Biología Celular, Facultad de Ciencias BiológicasUniversidad Católica de ChileSantiagoChile

Personalised recommendations