Molecular and General Genetics MGG

, Volume 194, Issue 3, pp 508–512 | Cite as

Transfer RNA gene mapping studies on cyanelle DNA from Cyanophora paradoxa

  • Marcel Kuntz
  • Edwin J. Crouse
  • Mfika Mubumbila
  • Gérard Burkard
  • Jacques-Henry Weil
  • Hans J. Bohnert
  • Hernann Mucke
  • Wolfgang Löffelhardt
Article

Summary

The 4S RNA of cyanelles from Cyanophora paradoxa strain LB 555 UTEX was fractionated by two-dimensional gel electrophoresis. Individual tRNA species were identified by aminoacylation, labeled in vitro and hybridized to restriction endonuclease fragments of cyanelle DNA. Hybridization experiments, using individual tRNA species, have revealed the location of two tRNA genes, coding for tRNAAla and tRNAIle, in each of the two spacer segments separating the 16S and 23S rRNA genes on the two inverted repeats (10 kbp each) and three tRNA genes in the small single-copy region (17 kbp) separating the two inverted repeats. A minimum of 14 tRNA genes in the large single-copy region (88.5 kbp) has also been found.

Heterologous hybridization studies, using cyanelle tRNAs and chloroplast DNA from spinach, broad bean, or maize, indicate a high degree of homology between some tRNAs from cyanelles and chloroplasts.

Although cyanelles are often condisered as having evolved from endosymbiotic cyanobacteria, the organization of tRNA genes on cyanelle DNA and the results of heterologous hybridization studies show that cyanelles are related to higher plant chloroplasts.

Keywords

Maize Inverted Repeat tRNA Gene Hybridization Experiment Broad Bean 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt J, Winter P, Sebald W, Moser JG, Schedel R, Westhoff P, Herrmann RG (1983) Localization and nucleotide sequence of the gene for the ATP synthase proteolipid subunit on the spinach plastid chromosome. Curr Genet 7:129–138Google Scholar
  2. Bohnert HJ, Crouse EJ (1981) A simple, inexpensive, general method for the isolation of high molecular weight chloroplast DNA. Plant Mol Biol Newslett 2:70–72Google Scholar
  3. Bohnert HJ, Löffelhardt W (1982) Cyanelle DNA from Cyanophora paradoxa exists in two forms due to intramolecular recombination. FEBS Lett 150:403–406Google Scholar
  4. Bohnert HJ, Crouse EJ, Pouyet J, Mucke H, Löffelhardt W (1982a) The subcellular localization of DNA components from Cyanophora paradoxa, a flagellate containing endosymbiotic cyanelles. Eur J Biochem 126:381–388Google Scholar
  5. Bohnert HJ, Crouse EJ, Schmitt JM (1982b) Organization and expression of plastid genomes. In: Parthier B, Boulter D (eds) Encyclopedia of plant physiology new series, vol 14b. Springer-Verlag, Berlin Heidelberg pp 475–530Google Scholar
  6. Burkard G, Steinmetz A, Keller M, Mubumbila M, Crouse EJ, Weil JH. (1982) Resolubion of chloroplast tRNAs by two-dimensional gel electrophoresis. In: Edelman M, Hallick RB, Chua NH (eds). Elsevier Biomedical Press, Amsterdam, pp 347–357Google Scholar
  7. Crick FHC (1966) Codon-anticodon pairing: the wobble hypothesis. J Mol Biol 19:548–555Google Scholar
  8. Deno H, Shinozaki K, Sugiura M (1983) Nucleotide sequence of tobacco chloroplast gene for the α subunit of proton-translocating ATPase. Nucl Acids Res 11:2185–2191Google Scholar
  9. Driesel AJ, Crouse EJ, Gordon K, Bohnert HJ, Herrmann RG, Steinmetz A, Mubumbila M, Keller M, Burkard G, Weil JH (1979) Fractionation and identification of spinach chloroplast transfer RNAs and mapping of their genes on the restriction map of chloroplast DNA. Gene 6:285–306Google Scholar
  10. Edelman M (1981) Nucleic acids of chloroplasts and mitochondria. In: Marcus A (ed) The biochemistry of plants, vol 6, Academic Press, New York, pp 249–301Google Scholar
  11. Gillham NW, Boynton JE, Harris EH (1984) Evolution of plastid DNA. In: Cavalier-Smith T (ed) DNA and evolution. Wiley, New York, in pressGoogle Scholar
  12. Guillemaut P, Weil JH (1982) The nucleotide sequence of the maize and spinach isoleucine transfer RNA encoded in the 16S to 23 S rDNA spacer. Nucleic Acids Res 10:1653–1659Google Scholar
  13. Heinhorst S, Shively JM (1983) Encoding of both subunits of ribulose-1,5-bisphosphate carboxylase by organelle genome of Cyanophora paradoxa. Nature 340:373–374Google Scholar
  14. Herdman M, Stanier RY (1977) The cyanelle: chloroplast or endosymbiotic prokaryote? FEMS Microbiol Lett 1:7–11Google Scholar
  15. Koch W, Edwards K, Kössel H (1981) Sequencing of the 16S–23S spacer in a ribosomal RNA operon of Zea mays chloroplast DNA reveals two split tRNA genes. Cell 25:203–213Google Scholar
  16. Koller B, Delius H (1980) Vicia faba chloroplast DNA has only one set of ribosomal RNA genes as shown by partial denaturation mapping and R-loop analysis. Mol Gen Genet 178:261–269Google Scholar
  17. Krebbers ET, Larrinua IM, McIntosh L, Bogorad L (1982) The maize chloroplast genes for the β and ε subunits of photosynthetic coupling factor CFl are fused. Nucl Acids Res 10:4985–5002Google Scholar
  18. Kuntz M, Keller M, Crouse EJ, Burkard G, Weil JH (1982) Fractionation and identification of Euglena gracilis cytoplasmic and chloroplastic tRNAs and mapping of tRNA genes on chloroplast DNA. Curr Genet 6:63–69Google Scholar
  19. Löffelhardt W, Mucke H, Bohnert HJ (1980) Cyanelle DNA from Cyanophora paradoxa: analogies to chloroplast DNA. In: Schwemmler W, Schenk HEA (eds) Endocytobiology. De Gruyter, Berlin-New York, pp 523–530Google Scholar
  20. Löffelhardt W, Mucke H, Crouse EJ, Bohnert HJ (1983) Comparison of the cyanelle DNA from two different strains of Cyonophora paradoxa. Curr Genet 7:139–144Google Scholar
  21. McIntosh L, Poulsen C, Bogorad L (1980) Chloroplast gene sequence for the large subunit of ribulose bisphosphate carboxylase of maize. Nature 288:556–560Google Scholar
  22. Mubumbila M, Burkard G, Keller M, Steinmetz A, Crouse EJ, Weil JH (1980) Hybridization of bean, spinach, maize and Euglena chloroplast transfer RNAs with homologous and heterologous chloroplast DNA. An approach to the study of homologies between chloroplast tRNAs from various species. Biochim Biophys Acta 609:31–39Google Scholar
  23. Mubumbila M, Gordon KHJ, Crouse EJ, Burkard G, Weil JH (1983) Construction of the physical map of the chloroplast DNA of Phaseolus vulgaris and localization of ribosomal and transfer RNA genes. Gene 21:257–266Google Scholar
  24. Mucke H, Löffelhardt W, Bohnert HJ (1980) Partial characterization of the genome of the endosymbiotic cyanelles from Cyanophora paradoxa. FEBS Lett 111:347–352Google Scholar
  25. Orozco EM Jr, Rushlow KE, Dodd JR, Hallick RB (1980) Euglena gracilis chloroplast ribosomal RNA transcription units. II. Nucleotide sequence homology between the 16S–23S RNA spacer and the 16S ribosomal RNA leader regions. J Biol Chem 255:10997–11003Google Scholar
  26. Rether B, Bonnet J, Ebel JP (1974) Studies on tRNA nucleotidyltransferase from baker's yeast. I. Purification of the enzyme. Protection against termal inactivation and inhibition by several substrates. Eur J Biochem 50:281–288Google Scholar
  27. Selden RF, Steinmetz A, McIntosh L, Bogorad L, Burkard G, Mubumbila M, Kuntz M, Crouse EJ, Weil JH (1983) Transfer RNA genes of Zea mays chloroplast DNA. Plant Mol Biol 2:141–153Google Scholar
  28. Silberklang M, Gillum AM, RajBhandary UL (1977) The use of P1 in sequence analysis of end group labeled RNA. Nucl Acids Res 4:4091–4108Google Scholar
  29. Sugita M, Sugiura M (1983) A putative gene of tobacco chloroplast coding for ribosomal protein similar to E. coli ribosomal protein S19. Nucl Acids Res 11:1913–1918Google Scholar
  30. Trench RK (1982) Physiology, biochemistry and ultrastructure of cyanellae. In: Round FE, Chapman DJ (eds) Progress Physiol Res, vol 1. Elsevier, Amsterdam-New York, pp 257–288Google Scholar
  31. Weil JH (1979) Cytoplasmic and organellar tRNAs in plants. In: Hall TC, Davies JW (eds) Nucleic acids in plants, CRC Press, Boca Raton, pp 143–192Google Scholar
  32. Williamson SE, Doolittle WF (1983) Genes for tRNAAla and tRNAIle in the spacer between the 16S and 23S rRNA genes of a blue-green alga: strong homology to chloroplast tRNA genes and tRNA genes of the E. coli rrnD gene cluster. Nucl Acids Res 11:225–235Google Scholar
  33. Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) The structure of the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase from spinach chloroplast DNA. Nucl Acids Res 9:3251–3270Google Scholar
  34. Zurawski G, Bottomley W, Whitfeld PR (1982a) Structures of the genes for the the β and ε subunits of spinach chloroplast ATPase indicate a dicistronic mRNA and an overlapping translation stop/start signal. Proc Natl Acad Sci USA 79:6260–6264Google Scholar
  35. Zurawski G, Bohnert HJ, Whitfeld PR, Bottomley W (1982b) Nucleotide sequence of the gene for the 32,000-Mr thylakoid membrane protein from Spinacia oleracea and Nicotiana debneyi predicts a totally conserved primary translation product of Mr 38,950. Proc Natl Acad Sci USA 79:7699–7702Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Marcel Kuntz
    • 1
  • Edwin J. Crouse
    • 1
  • Mfika Mubumbila
    • 1
  • Gérard Burkard
    • 1
  • Jacques-Henry Weil
    • 1
  • Hans J. Bohnert
    • 2
    • 3
  • Hernann Mucke
    • 4
  • Wolfgang Löffelhardt
    • 4
  1. 1.Institut de Biologie Moléculaire et CellulaireUniversité Louis PasteurStrasbourgFrance
  2. 2.Max-Planck-Institut für ZüchtungsforschungKöln 30Germany
  3. 3.European Molecular Biology LaboratoryHeidelbergGermany
  4. 4.Institut für Allgemeine Biochemie und Ludwig-Boltzmann-Forschungsstelle für BiochemieUniversität WienWienAustria

Personalised recommendations