Advertisement

Archives of Microbiology

, Volume 152, Issue 6, pp 600–605 | Cite as

The electrochemical proton potential generated by the sulphur respiration of Wolinella succinogenes

  • Christiane Wloczyk
  • Achim Kröger
  • Thomas Göbel
  • Gabriele Holdt
  • Ralf Steudel
Original Papers

Abstract

Wolinella succinogenes grown on formate and elemental sulphur was found to use the polysulphide derivatives 2,2′-tetrathiobispropionate (R2S4) or pentathionate (S5O 6 = ) as acceptors for formate oxidation. The specific activities of formate oxidation with these acceptors were similar to those with elemental sulphur. The main reaction products of R2S4 reduction were 2,2′-dithiobispropionate (R2S2) and sulphide. Pentathionate was converted to thiosulphate and some elemental sulphur. The electrochemical proton potential \((\Delta \tilde \mu _H )\) across the cytoplasmic membrane of the bacterium was measured in the steady state of electron transport from formate to R2S4. The electrical proportion (Δψ) of the \((\Delta \tilde \mu _H )\) determined through the distribution of labeled tetraphenylphosphonium cation was obtained as 0.17 Volt. The Δψ was zero, when a protonophore was present. The pH-difference across the membrane was negligible. Thus the \((\Delta \tilde \mu _H )\) generated by sulphur respiration is close to that measured earlier with fumarate as the terminal acceptor of electron transport.

Key words

Sulphur respiration Electrochemical proton potential Wolinella succinogenes 

Abbreviations

DMO

5,5-dimethyloxazolidine-2,4-dione

R2Sn (n=2–5)

2,2-polythiobispropionate

TTFB

4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazol

TPP

tetraphenylphosphonium cation

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmeyer HU (1970) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1596–1600Google Scholar
  2. Bode C, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:419–422Google Scholar
  3. Bronder M, Mell H, Stupperich E, Kröger A (1982) Biosynthetic pathways of Vibrio succinogenes growing with fumarate as terminal electron acceptor and sole carbon source. Arch Microbiol 131:216–223Google Scholar
  4. Brune A, Spillecke J, Kröger A (1987) Correlation of the turnover number of the ATP synthase in liposomes with the proton flux and the proton potential across the membrane. Biochim Biophys Acta 893:499–507Google Scholar
  5. Cammack R, Fauque G, Moura JJG, Le Gall J (1984) ESR studies of cytochrome c3 from Desulfovibrio desulfuricans strain Norway 4. Midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur. Biochim Biophys Acta 784:68–74Google Scholar
  6. Davis RE (1964) Nucleophilic displacement reactions at the sulphur-sulphur bond. Survey Progr Chem 2:189–238Google Scholar
  7. Gerischer II (1949) Über die Auflösungsgeschwindigkeit von Schwefel in Sulfid- und Polysulfidlösungen. Z Anorg Chem 259:220–224Google Scholar
  8. Giggenbach W (1972) Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20°. Inorg Chem 11:1201–1207Google Scholar
  9. Göbel T (1988) Synthesen und Analysen von kettenförmigen Polyschwefelverbindungen: Modelluntersuchungen zum Stoffwechsel der Schwefelbakterien. Doctoral Thesis, Technische Universität BerlinGoogle Scholar
  10. Hansen CJ (1933) Die Einwirkung von Schwefelwasserstoff und Sulfiden auf Polythionate. Chem Ber 66:817–825Google Scholar
  11. Holdt G, Göbel T, Steudel R (1987) Chromatographische Trennung von Polythionaten, Selenpolythionaten and schwefelreichen Carbonsäuren. Königsteiner Chromatographie-Tage, Proceedings, Waters, Eschborn, pp 437–447Google Scholar
  12. Kröger A, Winkler E (1981) Phosphorylative fumarate reduction in Vibrio succinogenes: Stoichiometry of ATP synthesis. Arch Microbiol 129:100–104Google Scholar
  13. Kröger A, Dorrer E, Winkler E (1980) The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim Biophys Acta 589:118–136Google Scholar
  14. Kurtenacker A, Goldbach E (1927) Über die Analyse von Polythionatlösungen. Z Anorg Allg Chem 166:177–189Google Scholar
  15. Kurtenacker A, Kaufmann M (1925) Über die Einwirkung von Schwefelwasserstoff auf die Polythionate. Z Anorg Allg Chem 148:256–264Google Scholar
  16. Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes of H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150Google Scholar
  17. Mell H (1985) Mechanismus der Energieübertragung bei der Elektronentransport-Phosphorylierung von Wolinella succinogenes. Doctoral Thesis, Philipps-Universität MarburgGoogle Scholar
  18. Mell H, Wellnitz C, Kröger A (1986) The electrochemical proton potential and the proton/electron ratio of the electron transport with fumarate in Wolinella succinogenes. Biochim Biophys Acta 852:212–221Google Scholar
  19. Schröder I (1987) Der Schwefelstoffwechsel von Wolinella succinogenes. Doctoral Thesis, Philipps-Universität MarburgGoogle Scholar
  20. Schröder I, Kröger A, Macy JM (1988) Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes. Arch Microbiol 149:572–579Google Scholar
  21. Steudel R, Holdt G (1986) Ion-pair chromatographic separation of polythionates with up to thirteen sulphur atoms. J Chromat 361:379–384Google Scholar
  22. Zaritsky A, Khihara M, Mac Nab RM (1981) Measurement of membrane potential in Bacillus subtilis: A comparison of lipophilic cations, rubidium ion, and a cyanine dye as probes. J Membrane Biol 63:215–231Google Scholar
  23. Zöphel A, Kennedy MC, Beinert H, Kroneck PMH (1988) Investigation on microbial sulfur respiration 1. Activation and reduction of elemental sulphur in several strains of eubacteria. Arch Microbiol 150:72–77Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Christiane Wloczyk
    • 1
  • Achim Kröger
    • 1
  • Thomas Göbel
    • 2
  • Gabriele Holdt
    • 2
  • Ralf Steudel
    • 2
  1. 1.Institut für Mikrobiologie der J. W. Goethe-Universität Frankfurt am MainFrankfurt am MainGermany
  2. 2.Institut für Anorganische und Analytische ChemieTechnische Universität BerlinBerlin

Personalised recommendations