Molecular and General Genetics MGG

, Volume 179, Issue 2, pp 253–258 | Cite as

Caffeine as a comutagen for ethylmethanesulfonate in strains of phage T4

  • Michael L. Lockhart
  • Delbert M. Shankel


The mutation frequency of DNA polymerase mutants of phage T4 treated with ethyl methanesulfonate (EMS) then incubated in the presence and absence of caffeine was studied using an rII reversion system. The DNA polymerase mutation is shown to be antimutagenic for EMS induction of reversions which occur by a GC to AT transition. Caffeine acts as a comutagen for the induction by EMS of mutant phages and produces a significant increase in the frequency of reversions from rII to r+. Caffeine is slightly mutagenic for the phage strain carrying the wild type polymerase and inhibits the action of the 3′→5′ exonuclease function of T4 DNA polymerase as measured in vitro. These findings suggest that caffeine acts by directly influencing nucleotide selection or the editing function of the DNA polymerase.


Nucleotide Ethyl Caffeine Editing Mutation Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, E.A., Albrecht, I., Drake, J.W.: Properties of bacteriophage T4 mutants defective in DNA polymerase. Genetics 65, 187–200 (1970)Google Scholar
  2. 2.
    Apple, N.L., Drake, J.W.: The invariance of mutation rates in bacteriophage T4 as functions of medium pH. Mutat. Res. 20, 271–273 (1973)Google Scholar
  3. 3.
    Clarke, C.H., Shankel, D.M.: Antimutagenesis in microbial systems. Bacteriol. Rev. 39, 33–53 (1975)Google Scholar
  4. 4.
    Drake, J.W., Greening, E.O.: Suppression of chemical mutagenesis in bacteriophage T4 by genetically modified DNA polymerase. Proc. Natl. Acad. Sci. USA 66, 823–829 (1970)Google Scholar
  5. 5.
    Drake, J.W., Allen, E.I.: Antimutagenic DNA polymerases of bacteriophage T4. Cold Spring Harbor Symp. Quant. Biol. 33, 339–344 (1968)Google Scholar
  6. 6.
    Drake, J.W., Allen, E.F., Forsberg, S.A., Preparata, R.M., Greening, E.O.: Genetic control of mutation rates in bacteriophage T4. Nature (London) New Biol 22, 1128–1132 (1969)Google Scholar
  7. 7.
    Drake, J.W.: Troperties of ultraviolet induced rII mutants of bacteriophage T4. J. Mol. Biol. 6, 268–283 (1963)Google Scholar
  8. 8.
    Drake, J.W.: Spontaneous mutation accumulating in the complete absence of DNA replication. Proc. Natl. Acad. Sci. USA 55, 738–743 (1966)Google Scholar
  9. 9.
    Drake, J.W.: The genetic control of spontaneous and induced mutation rates in bacteriophage T4. Genetics 73, 45–64 (1973)Google Scholar
  10. 10.
    Gillin, F.D., Nossal, N.G.. T4 DNA polymerase has a lower apparent Km for deoxynucleoside triphosphates complementary rather than noncomplementary to the template. Biochem. Biophys. Res. Commun. 64, 457–464 (1975)Google Scholar
  11. 11.
    Goodman, M.F., Bessman, M.J., Bachur, N.R.: Adriamycin and daunorubicin inhibition of mutant T4 DNA polymerases. Proc. Natl. Acad. Sci. USA 71, 1193–1196 (1974)Google Scholar
  12. 12.
    Hershfield, M.S.: On the role of deoxyribonucleic acid polymerase in determining mutation rates. Characterization of the effect on the T4 deoxyribonucleic acid, polymerase caused by the ts L88 mutation. J. Biol. Chem. 248, 1417–1423 (1973)Google Scholar
  13. 13.
    Kirtikar, D.M., Cathcart,G.R., Goldthwait, D.A.: Endonuclease II, apurinic acid endonuclease and exonuclease III. Proc. Natl. Acad. Sci. USA 73, 4324–3438 (1976)Google Scholar
  14. 14.
    Kleihues, P., Margison, G.P.: Exhaustion and recovery of repair excision of O6-methylguanine from rat liver DNA. Nature (London) New Biol. 259, 153–155 (1976)Google Scholar
  15. 15.
    Lindahl, T.: The new class of enzymes acting on damaged DNA. Nature (London) New Biol. 259, 64–66 (1976)Google Scholar
  16. 16.
    Mamet-Bratley, M.D.: Transcription in vitro from a DNA template containing apurinic sites. Biochem. Biophys. Acta 340, 237–242 (1974)Google Scholar
  17. 17.
    Morse, L.S., Pauling, C.: Induction of error-prone repair as a consequence of DNA ligase deficiency in Escherichia coli. Proc. Natl. Acad. Sci. USA 72, 4645–4649 (1975)Google Scholar
  18. 18.
    Muzyczka, N., Poland, R.L., Bessman, M.J.: Studies on the biochemical basis of spontaneous mutation. I. A comparison of the deoxyribonucleic acid polymerases of mutator, antimutator, and wild-type strains of bacteriophage T4. J. Biol. Chem. 247, 7116–7122 (1972)Google Scholar
  19. 19.
    Nishida, Y., Yasuda, S., Sekiguchi, M.: Repair of DNA damaged by methyl methanesulfonate in bacteriophage T4. Biochem. Biophys. Acta 442, 208–215 (1976)Google Scholar
  20. 20.
    Nossal, N.G.: DNA Polymerase from wild-type and mutant T4 bacteriophage. In: Methods in molecular biology, Vol. 7. DNA replication. (Reed B. Wickner, ed.) New York: Marcel Dekker 1974Google Scholar
  21. 21.
    Presber, H.W., Schroeder, C., Rosenthal, H.A.: Can temperature-sensitive virus mutants be used in the search for specific inhibitors. Acta virol. 18, 258–260 (1974)Google Scholar
  22. 22.
    Presber, H.W.: Excision of Bromodeoxyuridine from T4-DNA by an Antimutator Polymerase of T4 Phage. Acta Virol. 19, 177–181 (1975)Google Scholar
  23. 23.
    Randerath, K., Randerath, E.: Ion-exchange chromatography of nucleotides on poly(ethyleneimine)-cellulose thin layers. J. Chromatogr. 16, 111–125 (1964)Google Scholar
  24. 24.
    Ripley, L.S.: Transversion mutagenesis in bacteriophage T4. Mol. gen. Genet. 141, 23–40 (1975)Google Scholar
  25. 25.
    Schnaar, R.L., Muzyczka, N., Bessman, M.J.: Utilization of aminopurine deoxynucleoside triphosphate by mutator, antimutator and wild-type DNA polymerases of bacteriophage T4. Genetics 73, 137–140 (1973)Google Scholar
  26. 26.
    Shimizu, K., Sekiguchi, M.: 5′3′-exonucleases of bacteriophage T4. J. Biol. Chem. 251, 2613–2619 (1976)Google Scholar
  27. 27.
    Sideropoulos, A.S., Shankel, D.M.: Mechanism of caffeine enhancement of mutations induced by sublethal ultraviolet dosages. J. Bacteriol. 96, 198–204 (1968)Google Scholar
  28. 28.
    Singer, B.: Chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog. Nucleic Acid Res. Mol. Biol. 15, 219–284 (1975)Google Scholar
  29. 29.
    Siwinska, M.E., Tabacznski, M., Kunicki-Goldfinger, W.J.H.: Effects of mutator, antimutator and wild-type DNA polymerase of T4 bacteriophage on mutation rates in rII cistrons of its own genome and in complemented amber mutants of gene 43. Acta Microbiol. Pol., Ser. A 6 (23), 63–70 (1974)Google Scholar
  30. 30.
    Speyer, J.F.: Mutagenic DNA polymerase. Biochem. Biophys. Res. Commun. 21, 6–8 (1965)Google Scholar
  31. 31.
    Uyemura, D., Lehman, I.R.: Biochemical characterization of mutant forms of DNA polymerase I from Escherichia coli. I. The Pol A12 mutation. J. Biol. Chem. 251, 4078–4083 (1976)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • Michael L. Lockhart
    • 1
  • Delbert M. Shankel
    • 1
  1. 1.Department of MicrobiologyUniversity of KansasLawrenceUSA

Personalised recommendations