Archives of Microbiology

, Volume 107, Issue 3, pp 357–360 | Cite as

Die stoffwechselphysiologischen Beziehungen zwischen Paramecium bursaria Ehrbg. und Chlorella spec. in der Paramecium bursaria-Symbiose

I. Der Stickstoff- und der Kohlenstoff-Stoffwechsel
  • Werner Reisser
Short Communications

Zusammenfassung

Infektionsexperimente algenfreier Paramecium bursaria mit aus diesen isolierten und unter Stickstoffmangel-Bedingungen vorkultivierten Algen deuten darauf hin, daß die Versorgung der endosymbiontischen Algen mit stickstoffhaltigen Verbindungen durch ihren Wirt in einem zu gutem Wachstum und Vermehrung der Alge ausreichendem Maße möglich ist. Die Bedeutung dieser stoffwechselphysiologischen Beziehung für die Symbiosepartner wird diskutiert.

Die Vergiftung der Photosynthese der endosymbiontischen Chlorella durch 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff (DCMU) führt in grünen Paramecium bursaria durch Beeinflussung des Kohlenstoff-Stoffwechsels zu einer Entkoppelung des symbiontischen steady state-Systems und damit zur Auflösung der Symbiose. Eine ausreichende heterotrophe Ernährung der Alge durch das Paramecium ist in der Symbiose offenbar nicht möglich.

Die Anwendung von 3-(3,4-Dichlorphenyl)-1,1-dimethylharnstoff (DCMU) kann als neue Methode zur Züchtung algenfreier Paramecium bursaria dienen.

The metabolic interactions between Paramecium bursaria Ehrbg. and Chlorella spec. in the Paramecium bursaria-symbiosis

I. The nitrogen and the carbon metabolism

Abstract

Symbiotic Chlorellae have been isolated from Paramecium bursaria Ehrbg. and cultivated under conditions of nitrogen deficiency. Reinfection of Chlorella-free Paramecium bursaria with these nitrogen-deficient algae resulted in a complete regeneration and multiplication of the algae within the host cells. The endosymbiotic algal cells of the Paramecium bursaria-symbiosis can be supplied by their host with nitrogen.

The inhibition of photosynthesis by 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) leads in green Paramecium bursaria to a breakdown of the symbiotic steady state-system resulting in a loss of algal cells. Obviously the endosymbiotic algae cannot be fed heterotrophically by their host to such an extent that a stable symbiosis is maintained.

The application of 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) can be used as a new method for culturing Chlorella-free Paramecium bursaria.

Key words

Chlorella Paramecium bursaria Symbiosis Metabolic interactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bomford, R.: Infection of alga-free Paramecium bursaria with strains of Chlorella, Scenedesmus, and a yeast. J. Protozool. 12, 221–224 (1965)Google Scholar
  2. Brown, J. A., Nielsen, P. J.: Transfer of photosynthetically produced carbohydrate from endosymbiotic chlorellae to Paramecium bursaria. J. Protozool. 21, 569–570 (1974)Google Scholar
  3. Cook, C. B.: Uptake of 35S-amino acids by symbiotic algae (Zoochlorellae) from the food of green Hydra. Amer. Zool. 10, 544 (1970)Google Scholar
  4. Hirshon, J. B.: The response of Paramecium bursaria to potential endocellular symbionts. Biol. Bull. 136, 33–42 (1969)Google Scholar
  5. Karakashian, S. J.: Growth of Paramecium bursaria as influenced by the presence of algal symbionts. Physiol. Zool. 36, 52–68 (1963)Google Scholar
  6. Karakashian, S. J., Karakashian, M. W.: Evolution and synbiosis in the genus Chlorella and related algae. Evolution 19, 368–377 (1965)Google Scholar
  7. Loefer, J. B.: Effect of certain “peptone” media and carbohydrates on the growth of Paramecium bursaria. Arch. Protistenk. 87, 142–150 (1936)Google Scholar
  8. Muscatine, L., Boyle, J. E., Smith, D. C.: Symbiosis of the acoel flatworm Convoluta roscoffensis with the alga Platymonas convolutae. Proc. roy. Soc. B 187, 221–234 (1974)Google Scholar
  9. Pado, R.: Mutual relation of protozoans and symbiotic algae in Paramaecium bursaria. I. The influence of light on the growth of symbionts. Folia Biol. 13, 173–182 (1965)Google Scholar
  10. Pado, R.: Mutual relation of protozoans and symbiotic algae in Paramaecium bursaria. II. Photosynthesis. Acta Soc. Bot. pol. 36, 97–108 (1967)Google Scholar
  11. Parker, R. C.: Symbiosis in Paramecium bursaria. J. exp. Zool. 46, 1–12 (1926)Google Scholar
  12. Pringsheim, E. G.: Physiologische Untersuchungen an Paramaecium bursaria. Arch. Protistenk. 64, 289–418 (1928)Google Scholar
  13. Reisser, W.: Zur Taxonomie einer auxotrophen Chlorella aus Paramecium bursaria Ehrbg. Arch. Microbiol. 104, 293–295 (1975)Google Scholar
  14. Siegel, R. W.: Hereditary endosymbiosis in Paramecium bursaria. Exp. Cell Res. 19, 239–252 (1960)Google Scholar
  15. Sonneborn, T. M.: Methods in the general biology and genetics of Parmecium aurelia. J. exp. Zool. 113, 87–148 (1950)Google Scholar
  16. Trebst, R.: Energy conservation in photosynthetic electron transport of chloroplasts. Ann. Rev. Plant Physiol. 25, 423–458 (1974)Google Scholar
  17. Weis, D. S.: Correlated growth of alga and protozoan in Paramecium bursaria. J. Protozool. 14, 12–13 (1967)Google Scholar
  18. Weis, D. S.: Regulation of host and symbiont population size in Paramecium bursaria. Experientia (Basel) 15, 664–666 (1969)Google Scholar
  19. Weis, D. S.: Sparing effect of light on bacterial consumption of Paramecium bursaria. Trans. Amer. Micr. Soc. 93, 135–140 (1974)Google Scholar
  20. Wichterman, R.: Studies on Zoochlorella-free Paramecium bursaria. Biol. Bull. 81, 304–305 (1941)Google Scholar
  21. Wichterman, R.: The biological effects of X-rays on mating types and conjugation of Paramecium bursaria. Anat. Rec. 87, 113–127 (1943)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Werner Reisser
    • 1
  1. 1.Abteilung für Experimentelle Phykologie (W. Wiessner)Pflanzenphysiologisches Institut der UniversitätGöttingenBundesrepublik Deutschland

Personalised recommendations