Skip to main content
Log in

Metabolism of Spirochaeta aurantia

I. Anaerobic energy-yielding pathways

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

  1. 1.

    Spirochaeta aurantia fermented glucose-1-14C primarily to ethanol, acetate, CO2, and H2. Most of the 14C-label was recovered from carbon 2 of ethanol and acetate, whereas essentially no radioactivity was present in CO2. Phosphofructokinase, fructosediphosphate aldolase, triosephosphate isomerase, and glyceraldehydephosphate dehydrogenase activities were detected in cell extracts. These data indicate that S. aurantia ferments glucose to pyruvate via the Embden-Meyerhof pathway.

  2. 2.

    Whole cells and cell extracts exhibited a coenzyme A-dependent CO2-pyruvate exchange. No formate-pyruvate exchange was detected, nor was formate involved in CO2 or H2 production. Acetyl phosphate formation from pyruvate by cell extracts was markedly stimulated by the presence of CoA in reaction mixtures. It was concluded that the organism utilizes a clostridial-type phosphoroclastic system to form acetyl-coenzyme A, CO2, and H2 from pyruvate. Acetyl CoA is metabolized to acetate via phosphotransacetylase and acetate kinase, or converted to ethanol by a double reduction involving aldehyde and alcohol dehydrogenase activities.

  3. 3.

    A rubredoxin, purified from cell extracts of S. aurantia, exhibited absorption maxima at 275, 376, and 490 nm (oxidized), and 275, 312, and 336 nm (NaBH4-reduced).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avison, A. W. D.: The synthesis of acyl phosphates in aqueous solution. J. chem. Soc. 1955, 732–738 (1955).

    Google Scholar 

  • Breznak, J. A., Canale-Parola, E.: Spirochaeta aurantia, a pigmented, facultatively anaerobic spirochete. J. Bact. 97, 386–395 (1969).

    Google Scholar 

  • —— Metabolism of Spirochaeta aurantia. II. Aerobic oxidation of carbohydrates. Arch. Mikrobiol. 83, 278–292 (1972).

    Google Scholar 

  • Chase, G. D.: Principles of radioisotope methodology. Minneapolis, Minn.: Burgess Publishing Co. 1959.

    Google Scholar 

  • Dawes, E. A., Foster, S. M.: The formation of ethanol in Escherichia coli. Biochim. biophys. Acta (Amst.) 22, 253–265 (1956).

    Google Scholar 

  • Dolin, M. I., Gunsalus, I. C.: Pyruvic acid metabolism. II. An acetoin-forming enzyme system in Streptococcus faecalis. J. Bact. 62, 199–214 (1951).

    Google Scholar 

  • Hespell, R. B.: Physiology and energy metabolism in Spirochaeta litoralis, Spirochaeta stenostrepta, and Treponema denticola, Dissertation, University of Massachusetts, 1970.

  • — Canale-Parola, E.: Carbohydrate metabolism in Spirochaeta stenostrepta. J. Bact. 103, 216–226 (1970a).

    Google Scholar 

  • —— Spirochaeta litoralis sp.n., a strictly anaerobic marine spirochete. Arch. Mikrobiol. 74, 1–18 (1970b).

    Google Scholar 

  • —— Amino acid and glucose fermentation by Treponema denticola. Arch. Mikrobiol. 78, 234–251 (1971).

    Google Scholar 

  • — Joseph, R., Mortlock, R. P.: Requirement for coenzyme A in the phosphoroclastic reaction of anaerobic bacteria. J. Bact. 100, 1328–1334 (1969).

    Google Scholar 

  • Horecker, B. L., Kornberg, A.: The extinction coefficients of the reduced band of pyridine nucleotides. J. biol. Chem. 175, 385–390 (1948).

    Google Scholar 

  • Koepsell, H. J., Johnson, M. J.: Dissimilation of pyruvic acid by cell-free preparations of Clostridium butylicum. J. biol. Chem. 145, 379–386 (1942).

    Google Scholar 

  • Kupfer, D. G., Canale-Parola, E.: Pyruvate metabolism in Sarcina maxima. J. Bact. 94, 984–990 (1967).

    Google Scholar 

  • Lipmann, F., Tuttle, L. C.: A specific micromethod for the determination of acyl phosphates. J. biol. Chem. 159, 21–28 (1945).

    Google Scholar 

  • Lovenberg, W., Sobel, B. E.: Rubredoxin: a new electron transfer protein from Clostridium pasteurianum. Proc. nat. Acad. Sci. (Wash.) 54, 193–199 (1965).

    Google Scholar 

  • McCormick, N. G., Ordal, E. J., Whiteley, H. R.: Degradation of pyruvate by Micrococcus lactilyticus. I. General properties of the formate-exchange reaction. J. Bact. 83, 887–898 (1962).

    Google Scholar 

  • Mortlock, R. P., Valentine, R. C., Wolfe, R. S.: Carbon dioxide activation in the pyruvate clastic system of Clostridium butyricum. J. biol. Chem. 234, 1653–1656 (1959).

    Google Scholar 

  • Neish, A. C.: Analytical methods for bacterial fermentations, Nat. Res. Council of Canada, Report No. 46-8-3 (2nd revision), Saskatoon 1952.

  • Newman, D. J., Postgate, J. R.: Rubredoxin from a nitrogen-fixing variety of Desulfovibrio desulfuricans. Europ. J. Biochem. 7, 45–50 (1968).

    Google Scholar 

  • Peck, H. D., Jr., Gest, H.: Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J. Bact. 73, 706–721 (1957).

    Google Scholar 

  • Pelnoy, R. A., Whiteley, H. R.: Regulatory properties of acetokinase from Veillonella alcalescens. J. Bact. 105, 259–267 (1971).

    Google Scholar 

  • Peterson, J. A., Coon, M. J.: Enzymatic ω-oxidation. III. Purification and properties of rubredoxin, a component of the ω-hydroxylation system of Pseudomonas oleovorans. J. biol. Chem. 243, 329–334 (1968).

    Google Scholar 

  • — Kusunose, M., Kusunose, E., Coon, M. J.: Enzymatic ω-oxidation. II. Function of rubredoxin as the electron carrier in ω-hydroxylation. J. biol. Chem. 242, 4334–4340 (1967).

    Google Scholar 

  • Postgate, J. R.: Cytochrome c3 and desulphoviridin: pigments of the anaerobe Desulphovibrio desulphuricans. J. gen. Microbiol. 14, 545–572 (1956).

    Google Scholar 

  • Rose, I. A., Grunberg-Manago, M., Korey, S. R., Ochoa, S.: Enzymatic phosphorylation of acetate. J. biol. Chem. 211, 737–756 (1954).

    Google Scholar 

  • Shanmugam, K. T., Arnon, D. I.: Isolation and characterization of two types of ferredoxin from a photosynthetic bacterium. Fed. Proc. 30, 1136 (1971).

    Google Scholar 

  • Stadtman, E. R., Novelli, G. D., Lipmann, F.: Coenzyme A function in and acetyl transfer by the phosphotransacetylase system. J. biol. Chem. 191, 365–376 (1951).

    Google Scholar 

  • Suh, B., Akagi, J. M.: Pyruvate-carbon dioxide exchange reaction of Desulfovirio desulfuricans. J. Bact. 91, 2281–2285 (1966).

    Google Scholar 

  • Umbreit, W. W., Burris, R. H., Stauffer, J. F.: Manometric techniques. Minneapolis, Minn.: Burgess Publishing Co. 1964.

    Google Scholar 

  • Vinzent, R.: Isolement et culture de spirilles et de spirochètes des eaux. C. R. Soc. biol. (Paris) 95, 1472–1474 (1926).

    Google Scholar 

  • Warburg, O., Christian, W.: Isolierung und Kristallisation des Gärungsferments Enolase. Biochem. Z. 310, 384–421 (1942).

    Google Scholar 

  • Whiteley, H. R., McCormick, N. G.: Degradation of pyruvate by Micrococcus lactilyticus. III. Properties and cofactor requirements of the carbon dioxide-exchange reaction. J. Bact. 85, 382–393 (1963).

    Google Scholar 

  • Wolfe, R. S., O'Kane, D. J.: Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J. biol. Chem. 205, 755–765 (1953).

    Google Scholar 

  • —— Cofactors of the carbon dioxide exchange reaction of Clostridium butyricum. J. biol. Chem. 215, 637–643 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breznak, J.A., Canale-Parola, E. Metabolism of Spirochaeta aurantia . Archiv. Mikrobiol. 83, 261–277 (1972). https://doi.org/10.1007/BF00425239

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425239

Keywords

Navigation