Archiv für Mikrobiologie

, Volume 84, Issue 3, pp 254–265 | Cite as

Regulation of carbohydrate composition of Saccharomyces cerevisiae under growth limitation

  • M. T. Küenzi
  • A. Fiechter
Article

Summary

  1. 1.

    The carbohydrate composition of Saccharomyces cerevisiae cultivated aerobically in the chemostat at different growth rates was investigated. It was compared with the specific activities of enzymes of the reserve carbohydrate pathways. Under glucose limitation the synthesis of reserve carbohydrates increases strongly with increasing limitation of substrate supply, i.e., decreasing growth rate. Fermenting cells accumulate only glycogen, whereas more slowly growing organism with a purely oxidative metabolism contain trehalose and high amounts of glycogen.

     
  2. 2.

    During the budding process the purely respirative cells degrade part of their reserves. In the presence of excess substrate the reserve carbohydrate content is low and remains unchanged during the cell cycle.

     
  3. 3.

    The percentage of structural carbohydrates in the cells shows little changes during the budding cycle, being scarcely influence by the growth rate.

     
  4. 4.

    At a growth rate of 0.077 h-1 the cells cultivated under glucose limitation contain even a higher amount of reserves than those grown under nitrogen limitation.

     
  5. 5.

    The course of the specific activities of UDP-glucose pyrophosphorylase and glycogen phosphorylase as a function of the growth rate follows that of the reserve carbohydrates.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atkinson, D. E., Walton, G. M.: Adenosine triphosphate conservation in metabolic regulation. J. biol. Chem. 242, 3239–3241 (1967).Google Scholar
  2. Beck, Ch., von Meyenburg, H. K.: Enzyme pattern and aerobic growth of Saccharomyces cerevisiae under various degrees of glucose limitation. J. Bact. 96, 479–486 (1968).Google Scholar
  3. Berke, H. L., Rothstein, A.: The metabolism of storage carbohydrates in yeast studied with glucose-1-C14 and dinitrophenol. Arch. Biochem. 72, 380–395 (1957).Google Scholar
  4. Brown, C. M., Rose, A. H.: Effects of temperature on composition and cell volume of Candida utilis. J. Bact. 97, 261–272 (1969).Google Scholar
  5. Eaton, N. R.: Endogenous respiration of yeast. II. The relationship of molecular structure to glycogen metabolism. Arch. Biochem. 95, 464–469 (1961).Google Scholar
  6. Fales, F. W.: The aerobic assimilation of glucose by yeast cells. J. biol. Chem. 235, 1255–1257 (1960).Google Scholar
  7. Fiechter, A.: Die kontinuierliche Züchtung von Mikroorganismen als apparatives Problem. Biotechnol. Bioeng. 7, 101–128 (1965).Google Scholar
  8. —, von Meyenburg, H. K.: Automatic analysis of gas exchange in microbial systems. Biotechnol. Bioeng. 10, 536–549 (1968).Google Scholar
  9. Fosset, M., Muir, L. W., Nielsen, L. D., Fischer, E. H.: Purification and properties of yeast glycogen phosphorylase a and b. Biochemistry 10, 4105–4113 (1971).Google Scholar
  10. Hyashibe, M., Sando, N., Osumi, M.: Synthesis of cell wall polysaccharides in the cell cycle of baker's yeast. J. gen. appl. Microbiol. 16, 171–179 (1970).Google Scholar
  11. Herbert, D.: Some principles of continuous culture. In: Recent progress in microbiology, pp. 381–396, edit. by G. Tunevall. Uppsala: Almqvist and Wiksells 1959.Google Scholar
  12. Holme, T.: Glycogen formation in continuous culture of Escherichia coli B. In: Continuous cultivation of microorganism, a Symposium, pp. 122–156. Prague: Academia 1958.Google Scholar
  13. Küenzi, M. T., Fiechter, A.: Changes in carbohydrate composition and trehalose-activity during the budding cycle of Saccharomyces cerevisiae. Arch. Mikrobiol. 64, 396–407 (1969).Google Scholar
  14. Lowry, O. H., Lopez, J. A.: The determination of inorganic phosphate in the presence of labile phosphate esters. J. biol. Chem. 162, 421–428 (1946).Google Scholar
  15. —, Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent J. biol. Chem. 193, 265–275 (1951).Google Scholar
  16. Panek, A.: Synthesis of trehalose by baker's yeast (Sacharomyces cerevisiae). Arch. Biochem. 98, 349–355 (1962).Google Scholar
  17. —: Function of trehalose in baker's yeast (Saccharomyces cerevisiae). Arch. Biochem. 100, 422–425 (1963).Google Scholar
  18. Polakis, E. S., Bartley, W.: Changes in dry weight, protein, deoxyribonucleic acid and reserve and structural carbohydrate during aerobic growth cycle of yeast. Biochem. J. 98, 883–887 (1966).Google Scholar
  19. Rothman, L. B., Cabib, E.: Regulation of glycogen synthesis in the intact yeast cell. Biochemistry 8, 3332–3341 (1969).Google Scholar
  20. ——: Two forms of yeast glycogen synthetase and their role in glycogen accumulation. Proc. nat. Acad. Sci. (Wash.) 66, 967–974 (1970).Google Scholar
  21. Schlegel, H. G.: Allgemeine Mikrobiologie. Stuttgart: Thieme 1969.Google Scholar
  22. Senez, J. C.: Microbiologie générale. Paris: Editions Doin 1968.Google Scholar
  23. Sjöblom, L., Stolpe, E.: Studies on baker's yeast. I. The carbohydrates of yeast and their changes on storage. Acta Acad. Aboensis, Ser. B. 24, 1–28 (1964).Google Scholar
  24. Trevelvan, W. E.: Synthesis and degradation of cellular carbohydrates by yeasts. In: The chemistry and biology of yeasts, pp. 369–436, edit. by A. H. Cook. New York: Academic Press 1958.Google Scholar
  25. —, Harrison, J. S.: Studies on yeast metabolism. 7. Yeast carbohydrate fractions. Separation from nucleic, analysis, and behaviour during anaerobic fermentation. Biochem. J. 63, 23–33 (1956).Google Scholar
  26. Villar-Palasi, C., Larner, J.: UDPG-pyrophosphorylase from muscle. In: Methods in enzymology, Vol. VI. pp. 355–359. S. P. Colowick, and N. O. Kaplan, eds. New York-London: Academic Press 1963.Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • M. T. Küenzi
    • 1
    • 2
  • A. Fiechter
    • 1
  1. 1.Institute of MicrobiologySwiss Federal Institute of TechnologyZürichSwitzerland
  2. 2.Rosenstiel Research CentreBrandeis UniversityWalthamU.S.A.

Personalised recommendations