Skip to main content
Log in

Physiological characteristics of glutamine synthetases I and II of Frankia sp. strain CpI1

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Frankia sp. strain CpI1 has two glutamine synthetases designated GSI and GSII. Biosynthetic activities of both GSI and GSII were strongly inhibited by ADP and AMP. Alanine, aspartate, glycine and serine inhibited both GSI and GSII activities, whereas asparagine and lysine inhibited only slightly. Glutamine inhibited GSII but did not affect GSI. Since GSII is more heat labile than GSI, their relative heat stabilities can be used to determine their contribution to total GS activity. In cells grown on ammonia and on glutamine as sole combined-nitrogen sources most GS activity detected in crude extracts was due to GSI. In cells transferred to glutamate, GSI accounted for all GS activity in the first 15 h and then heat labile GSII was induced and increased to account for 40% of total GS activity within 50 h. Transfer of N2-fixing cells to ammonia-containing medium led to a rapid decrease of GSII and a slow increase of GSI activity within 24 h. Conversely, when ammonia-grown cells were transferred to combined nitrogen-free medium, GSI activity gradually decreased and GSII increased before total activity leveled off in 50 h. GSII appears to be an ammonia-assimilating enzyme specifically synthesized during perceived N-starvation of Frankia cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009

    Google Scholar 

  • Benson DR, Mazzucco CE, Browning TJ (1985) Physiological aspects of Frankia. In: Ludden PW, Burris JE (eds) Nitrogen fixation and CO2 metabolism. Elsevier, New York, pp 175–182

    Google Scholar 

  • Bhandari B, Vairinhos F, Nicholas DJD (1983) Some properties of glutamine synthetase from Rhizobium japonicum strain CC705 and CC723. Arch Microbiol 136:84–88

    Google Scholar 

  • Bhatnagar L, Zeikus JG, Aubert J-P (1986) Purification and characterization of glutamine synthetase from the archaebacterium Methanobacterium ivanovi. J Bacteriol 165:638–643

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the determination of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Google Scholar 

  • Bravo A, Mora J (1988) Ammonium assimilation in Rhizobium phaseoli by the glutamine synthetase-glutamate synthase pathway. J Bacteriol 170:980–984

    Google Scholar 

  • Callaham D, DelTredici P, Torrey JG (1978) Isolation and cultivation in vitro of the actinomycete causing root nodulation in Comptonia. Science 199:899–902

    Google Scholar 

  • Carlson TA, Martin GB, Chelm BK (1987) Differential transcription of the two glutamine synthetase genes of Bradyrhizobium japonicum. J Bacteriol 169:5861–5866

    Google Scholar 

  • Chock PB, Rhee SG, Stadtman ER (1980) Interconvertible enzyme cascades in cellular regulation. Ann Rev Biochem 49:813–843

    Google Scholar 

  • Darrow RA, Knotts RR (1977) Two forms of glutamine synthetase in free-living root-nodule bacteria. Biochem Biophys Res Commun 78:554–559

    Google Scholar 

  • Deuel TF, Ginsburg A, Yeh J, Shelton E, Stadtman ER (1970) Bacillus subtilis glutamine synthetase. J Biol Chem 245:5195–5205

    Google Scholar 

  • Deuel TF, Bernlohr RW (1981) Regulation of the activity of the Bacillus licheniformis A5 glutamine synthetase. J Bacteriol 148:174–182

    Google Scholar 

  • Edmands J, Noridge NA, Benson DR (1987) The actinorhizal rootnodule symbiont Frankia sp. strain CpI1 has two glutamine synthetases. Proc Natl Acad Sci USA 84:6126–6130

    Google Scholar 

  • Fuchs RL, Keister DL (1980) Identification of two glutamine synthetases in Agrobacterium J Bacteriol 141:996–998

    Google Scholar 

  • Gauthier DL (1983) Effect of L-methionine-DL-sulfoximine on acetylene reduction and vesicle formation in derepressed cultures of Frankia strain D11. Can J Microbiol 29:1003–1006

    Google Scholar 

  • Ludwig RA (1980) Physiological roles of glutamine synthetase I and II in ammonium assimilation in Rhizobium sp. 32H1. J Bacteriol 141:1209–1216

    Google Scholar 

  • Martin GB, Chapman KA, Chelm BK (1988) Role of the Bradyrhizobium japonicum ntrC gene product in differential regulation of the glutamine synthetase II gene (glnII). J Bacteriol 170:5452–5459

    Google Scholar 

  • Noridge NA, Benson DR (1986) Isolation and nitrogen-fixing activity of Frankia sp. strain CpI1 vesicles. J Bacteriol 166:301–305

    Google Scholar 

  • Orr J, Haselkorn R (1981) Kinetic and inhibition studies of glutamine synthetase from the cyanobacterium Anabaena 7120. J Biol Chem 256:13099–13104

    Google Scholar 

  • Shapiro BM, Stadtman ER (1970) Glutamine synthetase (Escherichia coli). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 17A. Academic Press, New York, pp 910–922

    Google Scholar 

  • Stacey G, Tabita FR, van Baalen C (1977) Nitrogen and ammonia assimilation in the cyanobacteria: purification of glutamine synthetase from Anabaena sp. strain CA. J Bacteriol 132:596–603

    Google Scholar 

  • Tjepkema JD, Schwintzer CR, Benson DR (1986) Physiology of actinorhizal nodules. Ann Rev Plant Physiol 37:209–232

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsai, YL., Benson, D.R. Physiological characteristics of glutamine synthetases I and II of Frankia sp. strain CpI1. Arch. Microbiol. 152, 382–386 (1989). https://doi.org/10.1007/BF00425177

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425177

Key words

Navigation