Skip to main content
Log in

Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Desulfovibrio simplex spec. nov. strain XVI was isolated from an anaerobic sour whey digester. Single cells had a vibrioid shape and were motile by a single, polar flagellum. The size of cells was 0.5–1.0 μ×1.5–3.0 μm. The G+C content of the DNA of D. simplex strain XVI was 47.5 mol%. The only other Desulfovibrio species with a similar G+C content of the DNA was Desulfovibrio salexigens (46.1 mol%. D. simplex grew on H2/CO2, formate, pyruvate, L(+)-lactate, fumarate, malate, ethanol, 1-propanol and 1-butanol as electron donors, while Desulfovibrio salexigens grew in addition on methanol, 2-propanol, 2-butanol, glycerol, succinate, citrate, choline and glucose. Electron acceptors for D. simplex were sulfate, thiosulfate and nitrate. L(+)-Lactate was incompletely oxidized to acetate and CO2 during sulfate reduction. Furthermore, both species could be distinguished by the ability of D. simplex but not of D. salexigens to grow on and to oxidize benzaldehyde derivatives to the respective acids, including vanillin, p-anisaldehyde and syringaldehyde. Moreover, D. simplex could grow in the presence of trace amounts of NaCl, while D. salexigens had an obligate requirement of 25 g/l NaCl. In addition, D. simplex can be distinguished from D. salexigens by its differing polyamine pattern. On the basis of the presented data the description of strain XVI as Desulfovibrio simplex spec. nov. is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SRB:

sulfate reducing bacteria

HPLC:

hig performance liquid chromatography

References

  • Aranki A, Freter R (1972) Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am J Clin Nutr 25:1329–1334

    Google Scholar 

  • Badziong W, Thauer RK, Zeikus JG (1978) Isolation and characterization of Desulfovibrio growing on hydrogen plus sulfate as the sole energy source. Arch Microbiol 116:41–49

    Google Scholar 

  • Bak F, Widdel F (1986a) Anaerobic degradation of indolic compounds by sulfate-reducing enrichment cultures, and description of Desulfobacterium indolicum gen. nov., sp. nov. Arch Microbiol 146:170–176

    Google Scholar 

  • Bak F, Widdel F (1986b) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146:177–180

    Google Scholar 

  • Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens: Reevaluation of a unique biological group. Microbiol Rev 43:260–296

    Google Scholar 

  • Benner R, Maccubin AE, Hodson RE (1984) Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora. Appl Environ Microbiol 47:998–1004

    Google Scholar 

  • Brandis A, Thauer RK (1981) Growth of Desulfovibrio species on hydrogen and sulphate as sole energy source. J Gen Microbiol 126:249–252

    Google Scholar 

  • Bryant MP, Campbell LL, Reddy CA, Crabill MR (1977) Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33:1162–1169

    Google Scholar 

  • Esnault G, Caumette P, Garcia J-L (1988) Characterization of Desulfovibrio giganteus sp. nov., a sulfate-reducing bacterium isolated from a brackish coastal lagoon. Syst Appl Microbiol 10:147–151

    Google Scholar 

  • Evans WC (1977) Biochemistry of the bacterial catabolism of aromatic compounds in anaerobic environments. Nature 270:17–22

    Google Scholar 

  • Frazer AC, Young LY (1985) A Gram-negative anaerobic bacterium that utilizes o-methyl substituents of aromatic acids. Appl Environ Microbiol 49:1345–1347

    Google Scholar 

  • Healy JB, Young LY (1979) Anaerobic biodegradation of eleven aromatic compounds to methane. Appl Environ Microbiol 38:84–89

    Google Scholar 

  • Isa Z, Grusenmeyer S, Verstraete W (1986) Sulfate reduction relative to methane production in high-rate anaerobic digestion: Microbial aspects. Appl Environ Microbiol 51:580–587

    Google Scholar 

  • Joubert WA, Britz TJ (1987) Isolation of saccharolytic dissimilatory sulfate-reducing bacteria. FEMS Microbiol Lett 48:35–40

    Google Scholar 

  • Kluyver AJ, van Niel CB (1936) Prospects for a natural system of classification of bacteria. Zbl Bakteriol Parasitenkd Infektionskrh Hyg Abt 2, 94:369–403

    Google Scholar 

  • Kneifel H, Schoberth SM (1981) Occurrence of polyamines in the strictly acetogenic bacterium Acetobacterium woodii. FEMS Microbiol Lett 11:59–61

    Google Scholar 

  • Kneifel H, Stetter KO, Andreesen JR, Wiegel J, König H, Schoberth SM (1986) Distribution of polyamines in representative species of archaebacteria. Syst Appl Microbiol 7:241–245

    Google Scholar 

  • Kobayashi K, Takahashi E, Ishimoto M (1972) Biochemical studies on sulfate-reducing bacteria. XI. Purification and some properties of sulfite reductase, desulfoviridin. J Biochem 72:879–887

    Google Scholar 

  • Kristjansson JK, Schönheit P, Thauer RK (1982) Different K s-values for hydrogen of metanogenic and sulfate reducing bacteria. An explanation for the apparent inhibition of methanogenesis by sulfate. Arch Microbiol 131:278–282

    Google Scholar 

  • Marmur J, Doty P (1962) Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118

    Google Scholar 

  • Messner P, Pum D, Sára M, Stetter KO, Sleytr UB (1986) Ultrastructure of the cell envelope of the archaebacteria Thermoproteus tenax and Thermoproteus neutrophilus. J Bacteriol 166:1046–1054

    Google Scholar 

  • Nanninga HJ, Gottschal JC (1987) Properties of Desulfovibrio carbinolicus sp. nov. and sulfate reducing bacteria isolated from an anaerobic purification plant. Appl Environ Microbiol 53:802–809

    Google Scholar 

  • Ollivier B, Cord-Ruwisch R, Hatchikian EC, Garcia JL (1988) Characterization of Desulfovibrio fructosovorans sp. nov. Arch Microbiol 149:447–450

    Google Scholar 

  • Oremland RS, Polcin S (1982) Methanogenesis and sulfate reduction: competitive and non-competitive substrates in estuarine sediments. Appl Environ Microbiol 44:1270–1276

    Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfate-reducing bacteria. In: Starr MP, Stolp H, Trüger HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin Heidelberg New York, pp 926–940

    Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge, Cambridge University Press

    Google Scholar 

  • Postgate JR, Campbell LL (1966) Classification of Desulfovibrio species, the nonsporulating sulfate-reducing bacteria. Bacteriol Rev 30:732–738

    Google Scholar 

  • Robinson JA, Tiedje JM (1984) Competition between sulfate-reducing and methanogenic bacteria for H2 under resting and growing conditions. Arch Microbiol 137:26–32

    Google Scholar 

  • Scherer P, Kneifel H (1983) Distribution of polyamines in methanogenic bacteria. J Bacteriol 154:1315–1322

    Google Scholar 

  • Sleat R, Robinson JP (1984) The bacteriology of anaerobic degradation of aromatic compounds. J Appl Bacteriol 57:381–394

    Google Scholar 

  • Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Ann Rev Microbiol 37:311–339

    Google Scholar 

  • Szewzyk R, Pfennig N (1987) Complete oxidation of catechol by the strictly anaerobic sulfate-reducing Desulfobacterium catecholicum sp. nov. Arch Microbiol 147:163–168

    Google Scholar 

  • Terho TT, Hartiala K (1971) Method for determination of the sulfate content of glycosaminoglycans. Anal Biochem 41:471–476

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    Google Scholar 

  • Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch Microbiol 148:286–291

    Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate- or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams and Wilkins. Baltimore London, pp 663–679

    Google Scholar 

  • Winter J, Lerp C, Zabel H-P, Wildenauer FX, König H, Schindler F (1984) Methanobacterium wolfei, sp. nov., a new tungstenrequiring, thermophilic, autotrophic metanogen. Syst Appl Microbiol 5:457–466

    Google Scholar 

  • Zeikus JG (1981) Lignin metabolism and the carbon cycle. Adv Microbiol Ecol 5:211–243

    Google Scholar 

  • Zellner G, Winter J (1987a) Analysis of a highly efficient methanogenic consortium producing biogas from whey. Syst Appl Microbiol 9:284–292

    Google Scholar 

  • Zellner G, Winter J (1987b) Growth promoting effect of tungsten on methanogens and incorporation of tungsten-185 into cells. FEMS Microbiol Lett 40:81–87

    Google Scholar 

  • Zellner G, Vogel P, Kneifel H, Winter J (1987) Anaerobic digestion of whey and whey permeate with suspended and immobilized complex and defined consortia. Appl Microbiol Biotechnol 27:306–314

    Google Scholar 

  • Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel HP, Stetter KO, Winter J (1989a) Isolation and characterization of a thermophilic, sulfate-reducing archaebacterium, Archaeglobus fulgidus strain 2. Syst Appl Microbiol 11:151–160

    Google Scholar 

  • Zellner G, Kneifel H, Winter J (1989b) Biotransformation of benzaldehyde derivatives by sulfate reducing bacteria. Appl Environ Microbiol, submitted

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zellner, G., Messner, P., Kneifel, H. et al. Desulfovibrio simplex spec. nov., a new sulfate-reducing bacterium from a sour whey digester. Arch. Microbiol. 152, 329–334 (1989). https://doi.org/10.1007/BF00425169

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425169

Key words

Navigation