Archives of Microbiology

, Volume 109, Issue 1–2, pp 65–74 | Cite as

Stoffwechselprodukte von Mikroorganismen

158. Mitteilung. Tirandamycin B
  • H. Hagenmaier
  • K. H. Jaschke
  • L. Santo
  • M. Scheer
  • H. Zähner
Article

Zusammenfassung

Ein Stamm von Streptomyces flaveolus, Tü 1240, bildet neben dem schon länger bekannten Tirandamycin A das Tirandamycin B, das sich durch eine zusätzliche Hydroxylgruppe von A unterscheidet. Beide Antibiotica besitzen ein ähnliches Wirkungsspektrum und offensichtlich gleichen Wirkunsmechanismus. Anhand der Daten aus der Massenspektrometric, der 13C-und 1H-NMR-Spektren läßt sich dem Tirandamycin B die Formel II zuordnen.

Metabolic products of microorganisms

158. Tirandamycin B

Abstract

Streptomyces flaveolus, strain Tü 1240 produces besides Tirandamycin A, a hitherto unknown antibiotic, which is closely related to Tirandamycin A. The new antibiotic Tirandamycin B contains one additional hydroxylgroup. Both antibiotics exhibit a similar antimicrobial spectrum and they seem to have the same mechanism of action. According to the data obtained from mass spectrometry, 13C-and 1H-NMR spectra formula II could be deduced for Tirandamycin B.

Key words

New antibiotic from actinomycetes RNA-synthesis inhibitor Tirandamycin B 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. De Boer, C., Dietz, A., Silver, W. S., Savage, G. M.: Streptolydigin, a new antimicrobial antibiotic. I. Biologic studies of streptolydigin. Antibiotics Annual 1955/1956, pp. 886–892. New York: Medical Encyclopedia 1956Google Scholar
  2. Cornelius, V. (Koninklijke Nederlandse Gist- & Spiritusfabriek N.V.): Antibiotic MYC 8003. Ger. Offen. 2, 140, 674, Chem. Abstr. 77, 32742 (1972)Google Scholar
  3. Davis, B. D., Mingioli, E. S.: Mutants of Escherichia coli requiring methionine or vitamin B12. J. Bact. 60, 17–28 (1950)Google Scholar
  4. Fuchs, E., Millette, R. L., Zillig, W., Walter, G.: Influence of salts on RNA synthesis by DNA-dependent-RNA-polymerase from Escherichia coli. Eur. J. Biochem. 3, 183–193 (1967)Google Scholar
  5. Heil, A., Zillig, W.: Reconstitution of bacterial DNA-dependent RNA polymerase from isolated subunits as a tool for the elucidation of the role of the subunits in transcription. FEBS Letters 11, 165–168 (1970)Google Scholar
  6. Hütter, R.: Systematik der Streptomyceten. Bibl. Microbiol., Bd. 6. Basel: Karger 1967Google Scholar
  7. Johansson, K. R.: Proc. Ist Internat. Conf. Antibiot. Agric., Publ. 397, N.A.S. & N.R.C., Washington, D.C. (1956)Google Scholar
  8. Lev, M., Briggs, C. A. E., Coates, M. E.: The gut flora of the chick. 3. Differences in caecal flora between “infected”, “uninfected” and penicillin-fed chicks. Brit. J. Nutr. 11, 364 (1957)Google Scholar
  9. MacKellar, F. A., Grostic, M. F., Olson, E. C., Wnuk, R. J., Branfman, A. R., Rinehart, K. L., Jr.: Tirandamycin. I. Structure assignment. J. Amer. chem. Soc. 93, 4943–4945 (1971)Google Scholar
  10. di Mauro, E., Snyder, L., Marino, P., Lamberti, A., Coppo, A., Tocchini-Valentini, G. P.: Rifampicin sensitivity of the components of DNA-dependent RNA polymerase. Nature (Lond.) 222, 533–537 (1969)Google Scholar
  11. Meyer, C. E.: Tirandamycin, a new antibiotic. Isolation and characterization. J. Antibiot. 24, 558–560 (1971)Google Scholar
  12. Powell, L. W., Coates, M. E., Fuller, R., Harrison, G. F., Jayne-Williams, D. J.: The role of Clostridium perfringens in the growth response of chicks to dietary penicillin. J. appl. Bact. 37, 427–435 (1974)Google Scholar
  13. Reusser, F.: Streptolydigin, an inhibitor of oxydative phosphorylation in rat liver mitochondria. J. Bact. 100, 1335–1341 (1969)Google Scholar
  14. Reusser, F.: Tirandamycin: Inhibition of ribonucleic acid polymerase. Infect. Immun. 2, 77–81 (1970a)Google Scholar
  15. Reusser, F.: Tirandamycin: Inhibition of oxydative phosphorylation in rat liver mitochondria. Infect. Immun. 2, 82–88 (1970b)Google Scholar
  16. Robinson, K. L.: Uses of antibiotics in feeds. The value of antibiotics for growth of pigs. In: Antibiotics in agriculture (M. Woodbine, eds.), pp. 185–202. London: Butterworths 1962Google Scholar
  17. Schlolaut, W., Lange, K.: Der Einfluß von Flavomycin auf die Mast- und Schlachtleistung von Jungmastkaninchen. Arch. Geflügelk. 2, 69–71 (1973)Google Scholar
  18. Siddhikol, C., Erbstoeszer, J. W., Weisblum, B.: Mode of action of streptolydigin. J. Bact. 99, 151–155 (1969)Google Scholar
  19. Sippel, A., Hartmann, G.: Mode of action of rifamycin on the RNA-polymerase reaction. Biochim. biophys. Acta (Amst.) 157, 218–219 (1968)Google Scholar
  20. Uchida, K., Zähner, H.: Metabolic products of microorganisms 137. Rinamycin, a new inhibitor of RNA synthesis. J. Antibiot. 28, 185–193 (1975)Google Scholar
  21. Umezawa, H., Mizuno, S., Yamasaki, H., Nitta, K.: Inhibition of DNA-dependent RNA synthesis by rifamycins. J. Antibiot. (Tokyo) Ser. A 21, 234–236 (1968)Google Scholar
  22. Wehrli, W., Knüsel, F., Schmid, K., Staehlin, M.: Interaction of rifamycin with bacterial RNA polymerase. Proc. nat. Acad. Sci. (Wash.) 61, 667–673 (1968)Google Scholar
  23. Zillig, W., Fuchs, E., Millette, R. L.: DNA-dependent RNA-polymerase. In: Procedures in nucleic acid research (G. L. Cantoni, D. R. Davies, eds.), pp. 323–339. London-New York-Evanston: Harper & Row 1966Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • H. Hagenmaier
    • 1
    • 2
  • K. H. Jaschke
    • 1
    • 2
  • L. Santo
    • 1
    • 2
  • M. Scheer
    • 1
    • 2
  • H. Zähner
    • 1
    • 2
  1. 1.Lehrstuhl Mikrobiologie IInstitut für Organische Chemie der UniversitätTübingenBundesrepublik Deutschland
  2. 2.Lehrstuhl Mikrobiologie IInstitut für Biologie II der UniversitätTübingenBundesrepublik Deutschland

Personalised recommendations