Archives of Microbiology

, Volume 109, Issue 1–2, pp 51–58 | Cite as

Action of polymyxin B on bacterial membranes

Binding capacities for polymyxin B of inner and outer membranes isolated from Salmonella typhimurium G30
  • Michael Teuber
  • Johann Bader


Radioactive mono-N-acetyl-14C-polymyxin B or natural polymyxin B are within 60 s absorbed by isolated inner (cytoplasmic) and outer membranes from Salmonella typhimurium G30. The sigmoidal binding isotherms indicate saturation of inner and outer membranes with approximately 30 and 60 nmoles polymyxin B bound per mg membrane, respectively. Based on the known content of these membranes in lipopolysaccharide, phosphatidylglycerol, cardiolipin and phosphatidylethanolamine, a calculation of the theoretical binding capacities yields almost identical values if lipopolysaccharide, phosphatidylglycerol and cardiolipin are assumed to function as the actual binding sites for the antibiotic in the isolated membranes. The excellent agreement between theoretical evaluation and experimental determination of polymyxin B-binding capacities leaves little doubt that the named anionic compounds are the chemoreceptors for the cationic antibiotic. This is further substantiated by very similar binding and killing kinetics of polymyxin B.

Key words

Polymyxin B Antibiotic-binding Inner membrane Outer membrane Salmonella typhimurium G30 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ames, B. N.: Assay of inorganic phosphate, total phosphate and phosphatases. In: Methods in enzymology (E. F. Neufeld, V. Ginsburg, eds.), Vol. VIII, Complex carbohydrates, pp. 115–118. New York: Academic Press 1966Google Scholar
  2. Bader, J., Teuber, M.: Action of polymyxin B on bacterial membranes. I. Binding to the O-antigenic lipopolysaccharide of Salmonella typhimurium. Z. Naturforsch. 28c, 422–430 (1973)Google Scholar
  3. Bartman, K.: Antimikrobielle Chemotherapie, S. 143–148, Berlin-Heidelberg-New York: Springer 1974Google Scholar
  4. Brown, M. R. W.: Resistance of Pseudomonas aeruginosa. London: Wiley 1975Google Scholar
  5. Brown, M. R. W., Watkins, W. M.: Low magnesium and phospholipid content of cell walls of Pseudomonas aeruginosa resistant to polymyxin. Nature (Lond.) 227, 1360–1361 (1970)Google Scholar
  6. Brown, M. R. W., Wood, S. M.: Relation between cation and lipid content of cell walls of Pseudomonas aeruginosa, Proteus vulgaris and Klebsiella aerogenes and their sensitivity to polymyxin B and other antibacterial agents. J. Pharm. Pharmacol. 24, 215–218 (1972)Google Scholar
  7. Cerny, G., Teuber, M.: Differential release of periplasmic versus cytoplasmic enzymes from Escherichia coli B by polymyxin B. Arch. Mikrobiol. 78, 166–179 (1971)Google Scholar
  8. Chihara, S., Ito, A., Yahata, M., Tobita, T., Koyama, Y.: Chemical synthesis, isolation and characterization of α-N-fattyacyl colistin nonapeptide with special reference to the correlation between antimicrobial activity and carbon number of fattyacyl moiety. Agr. Biol. Chem. 38, 521–529 (1974)Google Scholar
  9. Craig, W. A., Kunin, C. M.: Dynamics of binding and release of the polymyxin antibiotics by tissues. J. Pharmacol. exp. Ther. 184, 757–765 (1973)Google Scholar
  10. Feingold, D. S., Hsu-Chen, C. C., Sud, I. J.: Basis for the selectivity of action of the polymyxin antibiotics on cell membranes. Ann. N. Y. Acad. Sci. 235, 480–492 (1974)Google Scholar
  11. Few, A. V.: The interaction of polymyxin E with bacterial and other lipids. Biochim. biophys. Acta (Amst.) 16, 137–145 (1955)Google Scholar
  12. Few, A. V., Schulman, J. H.: The absorption of polymyxin E by bacteria and bacterial cell walls and its bactericidal action. J. gen. Microbiol. 9, 454–466 (1953)Google Scholar
  13. Ghuysen, J. M., Tipper, D. J., Strominger, J. L.: Enzymes that degrade bacterial cell walls. In: Methods in enzymology (E. F. Neufeld, V. Ginsburg, eds.), Vol. III, Complex carbohydrates, pp. 685–699. New York: Academic Press 1966Google Scholar
  14. Giles, C. H.: Interpretation and use of sorption isotherms. Soc. Chem. Ind., London Monogr. No. 37, 14–32 (1970)Google Scholar
  15. Havranek, M., Veres, K.: A simple method of preparation of labelled peptides possessing antibiotic properties. Z. Naturforsch. 26b, 451–453 (1971)Google Scholar
  16. Hsu-Chen, C. C., Feingold, D. S.: The mechanism of polymyxin B action and selectivity toward biological membranes. Biochemistry 12, 2105–2111 (1973)Google Scholar
  17. Imai, M., Inoue, K., Nojima, S.: Effect of polymyxin B on liposomal membranes derived from Escherichia coli lipids. Biochim. biophys. Acta (Amst.) 375, 130–137 (1975)Google Scholar
  18. Jacobson, M., Koch, A., Kuntzman, R., Burchall, J.: The distribution and binding of tritiated polymyxin B in the mouse. J. Pharmacol. exp. Ther. 183, 433–439 (1972)Google Scholar
  19. Koike, M., Iida, K.: Effect of polymyxin on the bacteriophage receptors of the cell walls of gramnegative bacteria. J. Bact. 108, 1302–1411 (1971)Google Scholar
  20. Kunin, C. M.: Binding of antibiotics to tissue homogenates. J. infect. Dis. 121, 55–64 (1960)Google Scholar
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  22. Monner, D. A., Johnsson, S., Boman, H. G.: Ampicillin-resistant mutants of Escherichia coli K-12 with lipopolysaccharide alterations affecting mating ability and susceptibility to sex-specific bacteriophages. J. Bact. 107, 420–433 (1971)Google Scholar
  23. Nakajima, K.: Structure-activity relationship of colistins. Chem. Pharm. Bull. 15, 1219–1224 (1967)Google Scholar
  24. Newton, B. A.: The properties and mode of action of the polymyxins. Bact. Rev. 20, 14–27 (1956)Google Scholar
  25. Osborn, M. J.: Studies on the Gram-negative cell wall. I. Evidence for the role of 2-keto-3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 50, 499–506 (1963)Google Scholar
  26. Osborn, M. J., Gander, J. E., Parisi, E., Carson, J.: Mechanism of assembly of the outer membrane of Salmonella typhimurium. Isolation and characterization of cytoplasmic and outer membrane. J. Biol. Chem. 247, 3962–3972 (1972)Google Scholar
  27. Osborn, M. J., Rosen, S. M., Rothfield, L., Horecker, B. L.: Biosynthesis of bacterial lipopolysaccharide. I. Enzymatic incorporation of galactose in a mutant strain of Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 48, 1831–1838 (1962)Google Scholar
  28. Pache, W., Chapman, D., Hillaby, R.: Interaction of antibiotics with membranes: Polymyxin B and gramicidin S. Biochim. biophys. Acta (Amst.) 255, 358–361 (1972)Google Scholar
  29. Paulus, H.: Polymyxins. In: Antibiotics, Vol. II. Biosynthesis (D. Gottlieb, P. D. Shaw, eds.), pp. 254–267. Berlin-Heidelberg-New York: Springer 1967Google Scholar
  30. Rouser, G., Nelson, G. J., Fleischer, S., Simon, G.: Lipid composition of animal membranes, organelles and organs. In: Biological membranes, physical fact and function (D. Chapman, ed.), pp. 5–69. London-New York: Academic Press 1968Google Scholar
  31. Schindler, P. R. G., Teuber, M.: Action of polymyxin B on bacterial membranes: Morphological changes in the cytoplasm and in the outer membrane of Salmonella typhimurium and Escherichia coli B. Antimicrob. Agents Chemother. 8, 95–104 (1975)Google Scholar
  32. Shockman, G. D., Lampen, J. O.: Inhibition by antibiotics of the growth of bacterial and yeast protoplasts. J. Bact. 84, 508–512 (1962)Google Scholar
  33. Storm, D. R., Strominger, J. L.: Complex formation between bacitracin peptides and isoprenyl pyrophosphates. J. biol. Chem. 248, 3940–3945 (1973)Google Scholar
  34. Teuber, M.: Preparation of biologically active mono-N-acetyl-(14C)-derivatives of the membrane-specific polypeptide antibiotic polymyxin B. Z. Naturforsch. 25b, 117 (1970)Google Scholar
  35. Teuber, M.: Action of polymyxin B on bacterial membranes. II. Formation of lipophilic complexes with phosphatidic acid and phosphatidylglycerol. Z. Naturforsch. 28c, 476–477 (1973)Google Scholar
  36. Teuber, M.: Action of polymyxin B on bacterial membranes. III. Differential inhibition of cellular functions in Salmonella typhimurium. Arch. Microbiol. 100, 131–144 (1974)Google Scholar
  37. Teuber, M., Bader, J.: Quantitative correlation of uptake with antibiotic activity of polymyxin B in Salmonella typhimurium. FEBS Letters 16, 195–197 (1971)Google Scholar
  38. Teuber, M., Bader, J.: Action of polymyxin B on bacterial membranes. Phosphatidylglycerol and cardiolipin induced susceptibility to polymyxin B in Acholeplasma laidlawii B. Antimicrob. Agents Chemother. 9, 26–35 (1976)Google Scholar
  39. Teuber, M., Engel, H. P., Bader, J.: Polymyxin B-binding capacities of isolated phospholipids from Salmonella typhimurium. Biochem. Soc. Trans. 3, 943–946 (1975a)Google Scholar
  40. Teuber, M., Mayrhofer, E., Folly, G., Huber, W.: Action of polymyxin B on the membranes of mitochondria and chloroplasts. Abstr. 10th Meet. Fed. Eur. Biochem. Soc. No. 1045. Paris: Société de Chimie Biologique 1975bGoogle Scholar
  41. Waggoner, A. S., Stryer, L.: Fluorescent probes of biological membranes. Proc. nat. Acad. Sci. (Wash.) 67, 579–589 (1970)Google Scholar
  42. Wahn, K., Lutsch, G., Rockstroh, T., Zapf, K.: Morphological and physiological investigations on the action of polymyxin B on Escherichia coli. Arch. Mikrobiol. 63, 103–116 (1968)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Michael Teuber
    • 1
  • Johann Bader
    • 1
  1. 1.Lehrstuhl für MikrobiologieInstitut für Botanik und Mikrobiologie der Technischen UniversitätMünchen 2Germany

Personalised recommendations