Archives of Microbiology

, Volume 121, Issue 3, pp 241–249 | Cite as

Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic spirillum for inorganic and organic substrates

  • Jan C. Gottschal
  • Sacco de Vries
  • J. Gijs Kuenen


Competition in a chemostat between the versatile Thiobacillus A2 and the specialized T. neapolitanus for thiosulfate as the sole growth-limiting substrate, led to dominance of the specialized over the versatile organism, at dilution rates ≥0.025 h-1. Increasing concentrations of acetate or glycollate in the thiosulfate medium caused increased relative numbers of T. A2 in steady states at D=0.07 h-1. Eventually, with 10–12 mmol of organic substrate per litre, complete dominance of T. A2 over T. neapolitanus occurred.

Mixed cultures of T. A2 and a specialized spirillumshaped heterotroph, competing for acetate as sole growth-limiting substrate resulted in complete dominance of the heterotroph at dilution rates of 0.07 and 0.15 h-1. In this case increasing concentrations of thiosulfate in the acetate medium, up to 10 mM, eventually led to the elimination of the heterotroph.

These results have been interpreted as evidence that T. A2 was growing mixotrophically. As the concentration of the second substrate was raised, the number of T. A2 cells increased and as a result T. A2 consumed an increasing portion of the common substrate.

In mixed chemostat cultures containing all three organisms, T. A2 could maintain itself with all tested ratios of acetate and thiosulfate in the inflowing medium. The heterotroph was excluded from the culture below a relatively low acetate to thiosulfate ratio, whilst above a relatively high acetate to thiosulfate ratio T. neapolitanus was completely eliminated.

These results were discussed in relation to the ecological niche of Thiobacillus A2-type organisms.

Key words

Thiobacillus A2 Mixotrophy Competition Mixed cultures Facultative chemolithotroph Ecological niche 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Calkins, V. P.: Microdetermination of glycollic and oxalic acids. Ind. Eng. Chem. (Anal. Ed.) 15, 762–763 (1943)Google Scholar
  2. de Freitas, M. J., Frederickson, A. G.: Inhibition as a factor in maintenance of diversity of microbial systems. J. Gen. Microbiol. 106, 307–321 (1978)Google Scholar
  3. Hall, M. R., Berk, R. S.: Microbial growth on mercaptosuccinic acid. Can. J. Microbiol. 14, 515–523 (1968)Google Scholar
  4. Harder, W., Veldkamp, H.: Competition of marine psychrophilic bacteria at low temperatures. Anatonie van Leeuwenhoek 7. Microbiol. Serol. 37, 51–63 (1971)Google Scholar
  5. Harder, W., Visser, K., Kuenen, J. G.: Laboratory fermenter with an improved magnetic drive. Lab. Pract. 23, 644–645 (1974)Google Scholar
  6. Jost, J. L., Drake, J. F., Frederickson, A. G., Tsuchiya, H. M.: Interactions of Tetrahymena pyriformis, E. coli, Azotobacter vinelandii and glucose in a minimal medium. J. Bacteriol. 113, 834–840 (1973)Google Scholar
  7. Kuenen, J. G., Veldkamp, H.: Effects of organic compounds on growth of chemostat cultures of Thiomicrospira pelophila, Thiobacillus thioparus and Thiobacillus neapolitanus. Arch. Mikrobiol. 94, 173–190 (1973)Google Scholar
  8. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randell, R. J.: Protein measurement with the Folin reagent. J. Biol. Chem. 193, 265–275 (1951)Google Scholar
  9. Meers, J. L., Tempest, D. W.: The influence of extracellular products on the behaviour of mixed microbial populations in magnesiumlimited chemostat cultures. J. Gen. Microbiol. 52, 309–317 (1968)Google Scholar
  10. Meers, J. L.: Effect of dilution rate on the outcome of chemostat mixed culture experiments. J. Gen. Microbiol. 67, 359–361 (1971)Google Scholar
  11. Megee, R. D., Drake, J. F., Frederickson, A. G., Tsuchiya, H. M.: Studies of intermicrobial symbiosis. Saccharomyces cerevisiae and Lactobacillus casei. Can. J. Microbiol. 18, 1733–1742 (1972)Google Scholar
  12. Nathansohn, A.: Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt. Zool. Stat. Neapel 15, 655–680 (1902)Google Scholar
  13. Postgate, J. R.: Viable counts and viability. In: Methods in microbiology (J. R. Norris and D. W. Ribbons, eds.) vol. 1, pp. 611–628. New York-London: Academic Press 1969Google Scholar
  14. Rittenberg, S. C.: The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microb. Physiol. 3, 159–196 (1969)Google Scholar
  15. Rittenberg, S. C.: The obligate autotroph — the demise of a concept. Antonie van Leeuwenhoek J. Microbiol. Serol. 38, 457–478 (1972)Google Scholar
  16. Schook, L. B., Berk, R. S.: Nutritional studies with Pseudomonas aeruginosa grown on inorganic sulfur sources. J. Bacteriol. 133, 1377–1382 (1978)Google Scholar
  17. Smith, A. J., Hoare, D. S.: Specialist phototrophs, lithotrophs and methylotrophs: a unity among a diversity of procaryotes? Bacteriol. Rev. 41, 419–448 (1977)Google Scholar
  18. Sörbo, B.: A colorimetric method for the determination of thiosulfate. Biochim. Biophys. Acta (Amst.) 23, 412–416 (1957)Google Scholar
  19. Starkey, R. L.: Isolation of some bacteria which oxidize thiosulfate. Soil Sci. 39, 197–219 (1935)Google Scholar
  20. Swaby, R. J., Vitolins, M. I.: Sulphur oxidation in Australian soils. Trans. 9th Int. Conf. Soil Sci. 4, 673–681 (1968)Google Scholar
  21. Taylor, B. F., Hoare, D. S.: New facultative Thiobacillus and a reevaluation of the heterotrophic potential of Thiabacillus novellus. J. Bacteriol. 100, 487–497 (1969)Google Scholar
  22. Taylor, B. F., Hoare, D. S., Hoare, S. L.: Thiobacillus denitrificans as an obligate chemolithotroph. I. Isolation and growth studies. Arch. Mikrobiol. 78, 193–204 (1971)Google Scholar
  23. Taylor, P. A., Williams, P. J. LeB.: Theoretical studies on the coexistence of competing species under continuous flow conditions. Can. J. Microbiol. 21, 90–98 (1974)Google Scholar
  24. Trudinger, P. A.: Metabolism of thiosulfate and tetrathionate by heterotrophic bacteria from soil. J. Bacteriol. 93, 550–559 (1967)Google Scholar
  25. Tuttle, J. H., Jannasch, H. W.: Occurrence and types of thiobacillus-like bacteria in the sea. Limnol. Oceanogr. 17, 532–543 (1972)Google Scholar
  26. Veldkamp, H., Jannasch, H. W.: Mixed culture studies with the chemostat. J. Appl. Chem. Biotechnol. 22, 105–123 (1972)Google Scholar
  27. Vishniac, W., Santer, M.: The thiobacilli. Bacteriol. Rev. 21, 195–213 (1957)Google Scholar
  28. Yoon, H., Klinzing, G., Blanch, H. W.: Competition for mixed substrates by microbial populations. Biotechnol. Bioeng. 19, 1193–1211 (1977)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jan C. Gottschal
    • 1
  • Sacco de Vries
    • 1
  • J. Gijs Kuenen
    • 1
  1. 1.Department of MicrobiologyBiological CentreHarenThe Netherlands

Personalised recommendations