Advertisement

Archiv für Mikrobiologie

, Volume 79, Issue 4, pp 354–366 | Cite as

Inhibition of growth of obligately chemolithotrophic thiobacilli by amino acids

  • May C. Lu
  • Abdul Matin
  • Sydney C. Rittenberg
Article

Summary

  1. 1.

    The effects of eighteen l-amino acids and two peptides, added individually to an otherwise autotrophic medium, on the growth of Thiobacillus thioparus, Thiobacillus neapolitanus and Thiobacillus thiooxidans were tested. Under these conditions, specific l-amino acids, which differed for each of the thiobacilli, inhibited growth.

     
  2. 2.

    All inhibitory effects were reversed, completely or in part, in the presence of non-inhibitory concentrations of casein hydrolysate.

     
  3. 3.

    l-tyrosine or l-tryptophane reversed the l-phenylalanine inhibition of T. thioparus and T. neapolitanus; l-serine inhibition of T. thiooxidans was partially reversed by l-threonine and completely by l-valine plus l-leucine; and l-valine inhibition of T. thiooxidans was similarly reversed by l-leucine or l-isoleucine.

     
  4. 4.

    In cell-free systems derived from T. thiooxidans, l-valine or l-isoleucine inhibited the activity of acetolactate-forming enzyme. Repression of synthesis of this enzyme by l-valine, l-isoleucine and l-leucine could not be demonstrated.

     
  5. 5.

    d-valine and d-isoleucine were also inhibitory to T. thioparus. The inhibition by d-valine was not reversed in the presence of any combination of the l-isomers of valine, isoleucine and leucine.

     
  6. 6.

    It is concluded that inhibition of growth of these three obligately chemolithotrophic thiobacilli by l-amino acids is due to amino acid imbalances that derange normal regulatory processes as also occurs in chemoorganotrophic bacteria.

     

Keywords

Casein Hydrolysate Thiobacillus Amino Acid Imbalance Chemoorganotrophic Bacterium Thiobacillus Thiooxidans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beerstecker, E., Shive, W.: Prevention of phenylalanine synthesis by tyrosine. J. Biol. Chem. 167, 527–534 (1947).Google Scholar
  2. Fox, S. W., Fling, M., Bollenback, G. N.: Inhibition of bacterial growth by d-leucine. J. Biol. Chem. 155, 465–468 (1944).Google Scholar
  3. Fred, E. B., Davenport, A.: The effect of organic nitrogenous compounds on the nitrate forming organism. Soil Sci. 11, 389–404 (1921).Google Scholar
  4. Gibson, F., Pittard, J.: Pathways of biosynthesis of aromatic amino acids and vitamins and their control in microorganisms. Bact. Rev. 32, 465–492 (1968).Google Scholar
  5. Gladstone, G. P.: Inter-relationships between amino acids in the nutrition of B. anthracis. Brit. J. exp. Path. 20, 189–200 (1939).Google Scholar
  6. Grula, E. A.: Cell division in a species of Erwinia. II. Inhibition of division by d-amino acids. J. Bact. 80, 375–385 (1960).Google Scholar
  7. Jensen, H. L.: Effect of organic compounds on Nitrosomonas. Nature (Lond.) 165, 974 (1950).Google Scholar
  8. Johnson, C. L., Vishniac, W.: Growth inhibition in Thiobacillus neapolitanus by histidine, methionine, phenylalanine, and threonine. J. Bact. 104, 1145–1150 (1970).Google Scholar
  9. Kelly, D. P.: Influence of amino acids and organic antimetabolites on growth and biosynthesis of the chemoautotroph Thiobacillus neapolitanus strain C. Arch. Mikrobiol. 56, 91–105 (1967).Google Scholar
  10. —: Regulation of chemoautotrophic metabolism. I. Toxicity of phenylalanine to thiobacilli. Arch. Mikrobiol. 69, 330–342 (1969a).Google Scholar
  11. —: Regulation of chemoautotrophic metabolism. II. Competition between amino acids for incorporation into Thiobacillus. Arch. Mikrobiol. 69, 343–359 (1969b).Google Scholar
  12. —: Regulation of chemoautotrophic metabolism. III. DAHP synthetase in Thiobacillus neapolitanus. Arch. Mikrobiol. 69, 360–369 (1969c).Google Scholar
  13. La Riviere, J. W. M.: On the microbial metabolism of the tartaric acid isomers. Thesis, Delft 1958.Google Scholar
  14. Leavitt, R., Umbarger, H. E.: Isoleucine and valine metabolism in E. coli. XI. Valine inhibition of the growth of E. coli K 12. J. Bact. 83, 624–630 (1961).Google Scholar
  15. Lingens, F.: The biosynthesis of aromatic amino acids and its regulation. Angew. Chem. Internat. Edit. 7, 350–360 (1968).Google Scholar
  16. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin-phenol reagent. J. biol. Chem. 193, 265–275 (1951).Google Scholar
  17. Lu, M. C.: The mechanism of amino acid inhibition of obligate chemolithotrophs. M. Sc. thesis, University of California, Los Angeles 1969.Google Scholar
  18. Matin, A., Rittenberg, S. C.: Enzymes of carbohydrate metabolism in Thiobacillus species. J. Bact. 107, 179–186 (1971).Google Scholar
  19. Meikeljohn, J.: In: Autotrophic microorganisms. Edit. B. A. Fry and J. L. Peel. 4th. Symp. Soc. Gen. Microbiol. Cambridge: University Press 1954.Google Scholar
  20. Nathanson, A.: Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt. Zool. Sta. Neapel. 15, 665–680 (1902).Google Scholar
  21. Pfennig, N.: Eine vollsynthetische Nährlösung zur selektiven Anreicherung einiger Schwefelpurpurbakterien. Naturwissenschaften 48, 136 (1961).Google Scholar
  22. Rittenberg, S. C.: The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microb. Physiol. 3, 159–196 (1969).Google Scholar
  23. Schlegel, H. G.: Physiology and biochemistry of Knallgas bacteria. Adv. comp. phys. Biochem. 2, 185–236 (1966).Google Scholar
  24. Strijdom, B. W., Allen, O. N.: Medium supplementation with l- and d-amino acids relative to growth and efficiency of Rhizobium meliloti. Canad. J. Microbiol. 12, 275–283 (1966).Google Scholar
  25. Umbarger, H. E.: Regulation of amino acid metabolism. Ann. Rev. Biochem. 38, 323–378 (1969).Google Scholar
  26. — Brown, B.: Isoleucine and valine metabolism in E. coli. VIII. The formation of acetolactate. J. biol. Chem. 233, 1156–1160 (1958).Google Scholar
  27. Westerfeld, W. W.: A colorimetric determination of blood acetoin. J. biol. Chem. 161, 495–502 (1945).Google Scholar
  28. Winogradsky, S., Omeliansky, V.: Über den Einfluß der organischen Substanzen auf die Arbeit der nitrifizierenden Mikrobien. Zbl. Bakt., II. Abt. 5, 329–429 (1899).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • May C. Lu
    • 1
  • Abdul Matin
    • 1
  • Sydney C. Rittenberg
    • 1
  1. 1.Department of BacteriologyUniversity of CaliforniaLos AngelesUSA

Personalised recommendations