Advertisement

Archiv für Mikrobiologie

, Volume 79, Issue 4, pp 293–310 | Cite as

Structure and differentiation of the cell wall of Phytophthora palmivora: Cysts, hyphae and sporangia

  • J. Tokunaga
  • S. Bartnicki-Garcia
Article

Summary

Walls from cysts, hyphae and sporangia of Phytophthora palmivora consist chiefly (ca. 90% dry wt) of β-glucans with 1,3-, 1,4- and 1,6-links. The glucans are predominatly β-1,3-linked but there are significant differences in the relative proportion of 1,3-, 1,6- and 1,4-linked glucosyl residues among the three wall types. There are also differences in protein content, susceptibility to degradation by various β-glucanases, and surface texture. The isolated cyst wall consists solely of a thin fabric of long, tightly interwoven, randomly oriented microfibrils. Both inner and outer surfaces of the cyst wall are distinctly microfibrillar. The hyphal wall has two different textures; the internal surface is distinctly microfibrillar while the external surface is non-fibrillar. In a germinated cyst, there is a zone of demarcation where the microfibrils of the cyst wall disappear into the smooth outer texture of the germ tube wall. An exo-β-1,3-glucanase preferentially removed the amorphous material of the outer surface of the germ tube leaving exposed a continuous microfibrillar fabric from cyst to hyphal tube. Conceivably, the textural and structural differentiation of the cell wall may play a decisive role in cellular morphogenesis.

Keywords

Outer Surface Glucan Surface Texture Tube Wall Amorphous Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aronson, J. M., Cooper, B. A., Fuller, M. S.: Glucans of Oomycete cell walls. Science 155, 332–335 (1967).Google Scholar
  2. —, Fuller, M. S.: Cell wall structure of the marine fungus, Atkinsiella dubia. Arch. Mikrobiol. 68, 295–305 (1969).Google Scholar
  3. —, Preston, R. D.: Cell wall formation in spores of the fungus Allomyces. Nature (Lond.) 186, 95–96 (1960).Google Scholar
  4. Bartnicki-Garcia, S.: Chemistry of hyphal walls of Phytophthora. J. gen. Microbiol. 42, 57–69 (1966).Google Scholar
  5. —: Cell wall chemistry, morphogenesis and taxonomy of fungi. Ann. Rev. Microbiol. 22, 87–107 (1968).Google Scholar
  6. —: Cell wall composition and other biochemical markers in fungal phylogeny. In: Phytochemical phylogeny, pp. 81–103. (J. B. Harborne, ed.), London: Academic Press 1970.Google Scholar
  7. —, Lippman, E.: Enzymic digestion and glucan structure of hyphal walls of Phytophthora cinnamomi. Biochim. biophys. Acta (Amst.) 136, 533–543 (1967).Google Scholar
  8. —, Nickerson, W. J.: Isolation, composition, and structure of cell walls of filamentous and yeast-like forms of Mucor rouxii. Biochim. biophys. Acta (Amst.) 58, 102–119 (1962).Google Scholar
  9. Cooper, B. A., Aronson, J. M.: Cell wall structure of Pythium debaryanum. Mycologia (N.Y.) 59, 658–670 (1967).Google Scholar
  10. Hay, G. W., Lewis, B. A., Smith, F.: Periodate oxidation of polysaccharides: general procedures. In: R. L. Whistler (ed.): Methods in carbohydrate chemistry, vol. 5, pp. 357–361. New York-London: Academic Press 1965.Google Scholar
  11. Heath, I. B., Greenwood, A. D.: Wall formation in the Saprolegniales. II. Formation of cysts by the zoospores of Saprolegnia and Dictyuchus. Arch. Mikrobiol. 75, 67–79 (1970).Google Scholar
  12. Hemmes, D. E., Hohl, H. R.: Ultrastructural changes in directly germinating sporangia of Phytophthora parasitica. Amer. J. Bot. 56, 300–313 (1969).Google Scholar
  13. Hunsley, D., Burnett, J. H.: The ultrastructural architecture of the walls of some hyphal fungi. J. gen. Microbiol. 62, 203–218 (1970).Google Scholar
  14. Lin, C. C., Aronson, J. M.: Chitin and cellulose in the cell walls of the Oomycete Apodachlya sp. Arch. Mikrobiol. 72, 111–114 (1970).Google Scholar
  15. McConnell, M., Grove, S. N., Bracker, C. E.: Studies on the hyphal wall of the fungus Pythium ultimum. Proc. Indiana Acad. Sci. 77, 56 (1968).Google Scholar
  16. Moore, S., Stein, W. H.: A modified ninhydrin reagent for the photometric determination of amino acids and related compounds. J. biol. Chem. 211, 907–913 (1954).Google Scholar
  17. Novaes-Ledieu, M., Jimenez-Martinez, A.: The structure of cell walls of Phycomycetes. J. gen. Microbiol. 54, 407–415 (1968).Google Scholar
  18. ——, Villanueva, J. R.: Chemical composition of hyphal walls of Phycomycetes. J. gen. Microbiol. 47, 237–245 (1967).Google Scholar
  19. Pao, V. M., Aronson, J. M.: Cell wall structure of Sapromyces elongatus. Mycologia (N.Y.) 62, 531–541 (1970).Google Scholar
  20. Sietsma, J. H., Eveleigh, D. E., Haskins, R. H.: Cell wall composition and protoplast formation of some Oomycete species. Biochim. biophys. Acta (Amst.) 184, 306–317 (1969).Google Scholar
  21. Tokunaga, J., Bartnicki-Garcia, S.: Cyst wall formation and endogenous carbohydrate utilization during synchronous encystment of Phytophthora palmivora zoospores. Arch. Mikrobiol. 79, 283–292 (1971).Google Scholar
  22. Tracey, M. V.: Chitin. In: K. Peach and M. V. Tracey (ed.): Modern methods of plant analysis, vol. 2, pp. 269–270. Berlin-Heidelberg-New York: Springer 1955.Google Scholar
  23. Zevenhuizen, L. P. T. M., Bartnicki-Garcia, S.: Chemical structure of the insoluble hyphal wall glucan of Phytophthora cinnamomi. Biochemistry 8, 1496–1502 (1969).Google Scholar

Copyright information

© Springer-Verlag 1971

Authors and Affiliations

  • J. Tokunaga
    • 1
  • S. Bartnicki-Garcia
    • 1
  1. 1.Department of Plant PathologyUniversity of CaliforniaRiversideUSA

Personalised recommendations