Skip to main content
Log in

Differential release of periplasmic versus cytoplasmic enzymes from Escherichia coli B by polymyxin B

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Summary

5 to 6% of the total cellular protein was released into the medium from Escherichia coli B which was harvested from a logarithmically growing culture in a glycerol-salts medium, suspended in 0.14 M NaCl, pH 7.3, at a tenfold cell density (about 1.5×1010/ml or 1.6 mg protein/ml) and treated for 1 min at 37° C with 200 μg polymyxin B/ml. The protein patterns of this material obtained by polyacrylamide gel electrophoresis were identical with those derived from an osmotic shock supernatant according to Neu and Heppel (1965). Periplasmic enzyme activities found in the polymyxin-supernatant included 5′-nucleotidase, 3′-nucleotidase, ribonuclease I, acid phosphatase and alkaline phosphatase. Upon further incubation with polymyxin B (up to 60 min), cell autolysis occurred with a concomitant release of 68% of total protein and up to 100% of cytoplasmic enzyme activities like β-galactosidase, inorganic pyrophosphatase and aldolase. This autolysis was not observed with stationary phase cells or with cells grown in a complex yeast extract-glucose broth. The mechanism of action of polymyxin B leading to the specific release of periplasmic proteins in discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen, J. M., Hyncik, G.: Localisation of alkaline phosphatases in gel matrices following electrophoresis. J. Histochem. Cytochem. 11, 169–175 (1963).

    Google Scholar 

  • Ames, B. N., Dubin, D. T.: Role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J. biol. Chem. 235, 769–775 (1960).

    Google Scholar 

  • Bruns, F.: Determination and properties of serum aldolase. Biochem. Z. 325, 156–162 (1954).

    Google Scholar 

  • Chapman, D.: The physico-chemical approach to the study of lipoprotein interactions. In: E. Tria and A. M. Scanu (ed.). Structural and functional aspects of lipoproteins in living systems, pp. 3–36. London-New York: Academic Press 1969.

    Google Scholar 

  • Few, A. V.: The interaction of polymyxin E with bacterial and other lipids. Biochim. biophys. Acta (Amst.) 16, 137–145 (1955).

    Google Scholar 

  • Heppel, L. A.: Selective release of enzymes from bacteria. Science 156, 1451–1455 (1967).

    Google Scholar 

  • Josse, J.: Constitutive inorganic pyrophosphatase of Escherichia coli. I. Purification and properties. J. biol. Chem. 241, 1938–1947 (1966).

    Google Scholar 

  • Kammen, H. O.: Thymine metabolism in Escherichia coli. I. Factors involved in utilization of exogenous thymine. Biochim. biophys. Acta (Amst.) 134, 301–311 (1967).

    Google Scholar 

  • Koike, M., Iida, K., Matsuo, T.: Electron microscopic studies on mode of action of polymyxin. J. Bact. 97, 448–452 (1969).

    Google Scholar 

  • Lopes, J., Innis, W. E.: Electron microscopy of effect of polymyxin on Escherichia coli lipopolysaccharide. J. Bact. 100, 1128–1130 (1969).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    Google Scholar 

  • Malamy, M., Horecker, B. L.: The localization of alkaline phosphatase in Escherichia coli K 12. Biochem. biophys. Res. Commun. 5, 104–108 (1961).

    Google Scholar 

  • ——: Release of alkaline phosphatase from cells of Escherichia coli upon lysozyme spheroplast formation. Biochemistry 3, 1889–1897 (1964).

    Google Scholar 

  • Medveczky, N., Rosenberg, H.: The phosphate-binding protein of Escherichia coli. Biochim. biophys. Acta (Amst.) 211, 158–168 (1970).

    Google Scholar 

  • Neu, H. C.: The 5′-nucleotidase of Escherichia coli. II. Surface localization and purification of the Escherichia coli 5′-nucleotidase inhibitor. J. biol. Chem. 242, 3905–3911 (1967).

    Google Scholar 

  • —: The 5′-nucleotidases (uridine diphosphate sugar hydrolases) of the Enterobacteriaceae. Biochemistry 7, 3766–3773 (1968a).

    Google Scholar 

  • —: The cyclic phosphodiesterases (3′-nucleotidases) of the Enterobacteriaceae. Biochemistry 7, 3774–3780 (1968b).

    Google Scholar 

  • —: Relation of lipopolysaccharide and fatty acid ester release to the ethylenediaminetetraacetic acid alteration of permeability in Enterobacteriaceae. J. Bact. 102, 537–539 (1970).

    Google Scholar 

  • —, Heppel, L. A.: The release of ribonuclease into the medium when E. coli cells are converted to spheroplasts. Biochem. biophys. Res. Commun. 14, 109–112 (1964).

    Google Scholar 

  • ——: The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. biol. Chem. 240, 3685–3692 (1965).

    Google Scholar 

  • Newton, B. A.: The properties and mode of action of the polymyxins. Bact. Rev. 20, 14–27 (1956).

    Google Scholar 

  • Nisonson, I., Tannenbaum, M., Neu, H. C.: Surface localization of Escherichia coli 5′-nucleotidase by electron microscopy. J. Bact. 100, 1083–1090 (1969).

    Google Scholar 

  • Op den Kamp, J. A. F., Van Deenen, L. L. M., Tomasi, V.: Bacterial phospholipids and membranes. In: E. Tria and A. M. Scanu (ed.): Structural and functional aspects of lipoproteins in living systems, pp. 227–325. London-New York: Academic Press 1969.

    Google Scholar 

  • Ornstein, L.: Disc electrophoresis. I. Background and theory. Ann. N.Y. Acad. Sci. 121, 321–349 (1964).

    Google Scholar 

  • Osborn, M. J.: Studies on the gram-negative cell wall. I. Evidence for the role of 2-keto-3-deoxyoctonate in the lipopolysaccharide of Salmonella typhimurium. Proc. nat. Acad. Sci. (Wash.) 50, 499–506 (1963).

    Google Scholar 

  • Overath, P., Schairer, H. U., Stoffel, W.: Correlation of in vivo and in vitro phase transitions of membrane lipids in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 67, 606–612 (1970).

    Google Scholar 

  • Pardee, A. B.: Membrane transport proteins. Science 162, 632–637 (1968).

    Google Scholar 

  • de Petris, S.: Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituent layers. J. Ultrastruct. Res. 19, 45–83 (1967).

    Google Scholar 

  • Rogers, D.: Osmotic pools in Escherichia coli. Science 159, 531–532 (1968).

    Google Scholar 

  • Schlegel, H. G., Schuster, E., Reh, M., Metz, H.: Die Abtötung wachsender Hydrogenomonas-Zellen durch Colistin. Zbl. Bakt, II. Abt. 119, 225–231 (1965).

    Google Scholar 

  • Stamminger, G., Schwager, M., Kaplan, R. W.: Anreicherung auxotropher Mutanten von Serratia marcescens mittels Antibiotica. Arch. Mikrobiol. 73, 231–237 (1970).

    Google Scholar 

  • Stern, I., Shapiro, B.: A rapid and simple method for the determination of esterified fatty acids and for total fatty acids in blood. J. clin. Path. 6, 158–160 (1953).

    Google Scholar 

  • Suzuki, T., Hayashi, K., Fujikawa, K., Tsukamoto, K.: Contribution to the elucidation of the chemical structure of polymyxin B1. J. Biochem. 56, 335–343 (1964).

    Google Scholar 

  • Teuber, M.: Bedingungen für den Abbau von Ribonucleinsäure in Escherichia coli nach Zerstörung der cytoplasmatischen Membran durch Toluol. Arch. Mikrobiol. 55, 31–45 (1966).

    Google Scholar 

  • Teuber, M.: Lysozyme-dependent production of spheroplast-like bodies from polymyxin B-treated Salmonella typhimurium. Arch. Mikrobiol. 70, 139–146 (1970a).

    Google Scholar 

  • —: Release of the periplasmic penicillinases from Escherichia coli by toluene. Arch. Mikrobiol. 73, 61–64 (1970b).

    Google Scholar 

  • Teuber, M.: Wirkungsmechanismus des membranspezifischen Polypeptidantibiotikums Polymyxin B auf Salmonella typhimurium. Habilitationsschrift, Technische Universität München (1970c).

  • —, Bevill, R. D., Osborn, M. J.: Aldoheptoses in the O-antigenic lipopolysaccharide of Salmonella typhimurium and other gramnegative bacteria. I. Chemical synthesis of L-glycero-D-mannoheptose and β-L-glycero-D-mannoheptopyranosyl 1-phosphate. Biochemistry 7, 3303–3308 (1968).

    Google Scholar 

  • —, Cerny, G.: Release of the periplasmic ribonuclease I into the medium from Escherichia coli treated with the membrane-active polypeptide antibiotic polymyxin B. FEBS Letters 8, 49–51 (1970).

    Google Scholar 

  • Wahn, K., Lutsch, G., Rockstroh, T., Zapf, K.: Morphological and physiological investigations on the action of polymyxin B on Escherichia coli. Arch. Mikrobiol. 63, 103–116 (1966).

    Google Scholar 

  • Warren, G. H., Cray, J., Yurchenko, J. A.: Effect of polymyxin on the lysis of Neisseria catarrhalis by lysozyme. J. Bact. 74, 788–793 (1957).

    Google Scholar 

  • Wetzel, B. K., Spicer, S. S., Dvorak, H. F., Heppel, L. A.: Cytochemical localization of certain phosphatases in Escherichia coli. J. Bact. 104, 529–542 (1970).

    Google Scholar 

  • Wilson, G., Rose, S. P., Fox, C. F.: Effect of membrane lipid unsaturation on glucoside transport. Biochem. biophys. Res. Commun. 38, 617–623 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerny, G., Teuber, M. Differential release of periplasmic versus cytoplasmic enzymes from Escherichia coli B by polymyxin B. Archiv. Mikrobiol. 78, 166–179 (1971). https://doi.org/10.1007/BF00424873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00424873

Keywords

Navigation