Archiv für Mikrobiologie

, Volume 87, Issue 1, pp 93–98 | Cite as

Photoheterotrophy and chemoheterotrophy among unicellular blue-green algae

  • R. Rippka


Thirty eight axenic strains belonging to the Chroococcales were screened for the ability to grow photoheterotrophically in the light with glucose in the presence of 10-5 M DCMU, which inhibits photoautotrophic growth. Seven strains could do so, and four of them could also grow chemoheterotrophically, though more slowly, with glucose in the dark. Six are members of the genus Aphanocapsa and one of the genus Chlorogloea. The remaining 31 strains examined appear to be obligate photoautotrophs. A quantitative study of the growth behaviour of one strain, Aphanocapsa 6714, fully confirmed its facultative photoheterotrophy and chemoheterotrophy.


Glucose Quantitative Study Axenic Strain Growth Behaviour DCMU 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allison, F. E., Hoover, S. R., Morris, J. H.: Physiological studies with the nitrogen fixing alga. Nostoc muscorum. Bot. Gaz. 98, 433–463 (1937).Google Scholar
  2. Bishop, N. I.: The influence of the herbicide DCMU on the oxygen evolving system of photosynthesis. Biochim. biophys. Acta (Amst.) 27, 205–206 (1958)Google Scholar
  3. Fay, P.: Heterotrophy and nitrogen fixation in Chlorogloea fritschii. J. gen. Microbiol. 39, 11–20 (1965).Google Scholar
  4. Hoare, D. S., Ingram, L. O., Thurston, E. L., Walkup, R.: Dark heterotrophic growth of an endophytic blue-green alga. Arch. Mikrobiol. 78, 310–321 (1971).Google Scholar
  5. Holm-Hansen, O.: Ecology, physiology and biochemistry of blue-green algae. Ann. Rev. Microbiol. 22, 47–70 (1968).Google Scholar
  6. Kenyon, C. N.: The fatty acid composition of unicellular strains of blue-green algae. J. Bact. 109, 827–834 (1972).Google Scholar
  7. Khoja, T., Whitton, B. A.: Heterotrophic growth of blue-green algae. Arch. Mikrobiol. 79, 280–282 (1971).Google Scholar
  8. Kiyohara, T., Fujita, Y., Hattori, A., Watanabe, A.: Heterotrophic growth of a blue-green alga Tolypothrix tenuis. J. gen. appl. Microbiol. (Tokyo) 6, 176–182 (1960).Google Scholar
  9. Lazaroff, N., Vishniac, W.: The relationship of cellular differentiation to colonial morphogenesis of the blue-green algae, Nostoc muscorum A. J. gen. Microbiol. 35, 447–457 (1964).Google Scholar
  10. Pelroy, R. A., Rippka, R., Stanier, R. Y.: The metabolism of glucose by unicellular blue-green algae, Arch. Mikrobiol. (in press).Google Scholar
  11. Stanier, R. Y., Kunisawa, R., Mandel, M., Cohen-Bazire, G.: Purification and properties of unicellular blue-green algae (Order Chroococcales). Bact. Rev. 35, 171–205 (1971).Google Scholar
  12. Van Baalen, C., Hoare, D. S., Brandt, E.: Heterotrophic growth of blue-green algae in dim light. J. Bact. 105, 685–689 (1971).Google Scholar
  13. Watanabe, A., Yamamoto, Y.: Heterotrophic nitrogen fixation by the blue-green alga Anabaenopsis circularis. Nature (Lond.) 214, 738 (1967).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • R. Rippka
    • 1
    • 2
  1. 1.Department of Bacteriology and ImmunologyUniversity of CaliforniaBerkeleyUSA
  2. 2.Institute PasteurParis 15eFrance

Personalised recommendations