Skip to main content
Log in

Pyruvatstoffwechsel von Clostridium butyricum

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

Zellfreier Extrakt von Clostridium butyricum kann die phosphoroclastische Reaktion und deren Umkehrung, die reduktive Carboxylierung von Acetylphosphat zu Brenztraubensäure, katalysieren. Durch die Behandlung an einer DEAE-Cellulosesäule wird das Ferredoxin vom Extrakt separiert; der Extrakt verliert dabei seine enzymatische Wirksamkeit. Durch Rekombination werden bis zu 40% der ursprünglichen Enzymaktivität wiederhergestellt. Aus dem gebildeten Pyruvat werden, besonders in Anwesenheit von Diphosphopyridinnucleotid, Glutamin und Mangan, weitere Verbindungen synthetisiert.

Summary

Cellfree extracts of Cl. butyricum catalyze the phosphoroclastic cleavage and the reversal of the reaction, the reductive carboxylation of acetylphosphate to pyruvate. Treatment of the extracts with DEAE-Cellulose removes the ferredoxin and the extract looses its catalytic activity. Adding back ferredoxin to DEAE-treated extracts restores the activity for synthesizing pyruvate up to 40%. Pyruvate serves as substrate for various reactions, which can be stimulated by DPN, Mn, and an amino donor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

Fd:

Ferredoxin

TPP:

Thiaminpyrophosphat

ATP:

Adenosintriphosphat

DPN:

Diphosphopyridinnucleotid (NAD)

Literatur

  • Altmann, S. M., E. M. Crook, and S. P. Datta: Paper chromatography of keto acids. Biochem. J. 49, 63 (1951).

    Google Scholar 

  • Andrew, I. G., and J. G. Morris: The biosynthesis of alanine by Clostridium kluyveri. Biochim. biophys. Acta (Amst.) 97, 176 (1965).

    Google Scholar 

  • Bachofen, R., B. B. Buchanan, and D. J. Arnon: Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. nat. Acad. Sci. (Wash.) 51, 690 (1964).

    Google Scholar 

  • Bayer, E., W. Parr u. B. Kazmaier: Aufbau des Ferredoxins, des Wirkstoffes der Assimilationsvorgänge. Arch. Pharmazie 298, 196 (1965).

    Google Scholar 

  • Bayer, E., W. Parr u. B. Kazmaier: Bergey's manual of determinative bacteriology, p. 770. New York 1948.

  • : Biochemisches Taschenbuch, S. 678. Berlin, Göttingen, Heidelberg: Springer 1956.

    Google Scholar 

  • Buchanan, B. B., R. Bachofen, and D. J. Arnon: Role of ferredoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. nat. Acad. Sci. (Wash.) 52, 839 (1964).

    Google Scholar 

  • —, and J. C. Rabinowitz: A comparison of clostridial ferredoxins. Proc. nat. Acad. Sci. (Wash.) 49, 345 (1963).

    Google Scholar 

  • Koepsell, H. J., M. J. Johnson, and J. S. Meek: Role of phosphate in pyruvic acid dissimilation by cell-free extracts of Clostridium butylicum. J. biol. Chem. 154, 535 (1944).

    Google Scholar 

  • Kostytschew, S., W. Gwaladse u. P. Eliasberg: Bildung von Brenztraubensäure bei der Milchsäuregärung. Hoppe-Seylers Z. physiol. Chem. 188, 127 (1930).

    Google Scholar 

  • Linskens, H. F.: Papierchromatographie in der Botanik, S. 127. Berlin, Göttingen, Heidelberg: Springer 1959.

    Google Scholar 

  • Lipmann, F., and L. C. Tuttle: A specific micromethod for the determination of acylphosphates. J. biol. Chem. 159, 21 (1945).

    Google Scholar 

  • Lovenberg, W., B. B. Buchanan, and J. C. Rabinowitz: Studies on the chemical nature of clostridial ferredoxin. J. biol. Chem. 238, 3899 (1963).

    Google Scholar 

  • Mortenson, L. E.: Ferredoxin and ATP, requirements for nitrogen fixation in cell-free extracts of Clostridium pasteurianum. Proc. nat. Acad. Sci. (Wash.) 52, 272 (1964).

    Google Scholar 

  • —, and J. E. Carnahan: An electron transport factor from Clostridium pasteurianum. Biochem. biophys. Res. Commun. 7, 448 (1962).

    Google Scholar 

  • Mortlock, R. R., R. C. Valentine, and R. S. Wolfe: Carbon dioxyde activation in the pyruvate clastic system of Clostridium butyricum. J. biol. Chem. 234, 1653 (1959).

    Google Scholar 

  • —, and R. S. Wolfe: Reversal of pyruvate oxydation in Clostridium butyricum. J. biol. Chem. 234, 1657 (1959).

    Google Scholar 

  • Neuberg, C., u. B. Arinstein: Vom Wesen der Buttersäure- und Butylalkoholgärung. Biochem. Z. 117, 269 (1921).

    Google Scholar 

  • Rabinowitz, J. C.: Factor B and other compounds related to Vitamin B12 in pyruvic acid—CO2 exchange. J. biol. Chem. 235, PC50 (1960).

    Google Scholar 

  • Rose, J. A.: In Colowick and Kaplan: Methods in enzymology, Vol. I, p. 591. New York: Academic Press 1955.

    Google Scholar 

  • Shug, A. L., and P. W. Wilson: Pyruvic dehydrogenase system of Clostridium pasteurianum. Fed. Proc. 15, 355 (1956).

    Google Scholar 

  • Stadtman, E. R.: The net enzymatic synthesis of acetyl-coenzyme A. J. biol. Chem. 196, 535 (1952).

    Google Scholar 

  • Stern, J. R.: Role of cofactors on pyruvate oxydation and synthesis by extracts of Clostridium kluyveri. In: Non-heme iron proteins, pp. 199–209. Yellow Springs: Antioch Press 1965.

    Google Scholar 

  • Tagawa, K., and D. J. Arnon: Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature (Lond.) 195, 537 (1962).

    Google Scholar 

  • Towers, G. H. N., and D. C. Mortimer: The role of keto-acids in photosynthetic carbon dioxyde assimilation. Canad. J. Biochem. 34, 511 (1956).

    Google Scholar 

  • Umbreit, W. W., R. H. Burris, and J. F. Stauffer: Manometric techniques, p. 28. Minneapolis: Burgess Press 1964.

    Google Scholar 

  • Utter, M. F., and K. Kurahashi: In Colowick and Kaplan: Methods in enzymology, Vol. I, p. 758. New York: Academic Press 1955.

    Google Scholar 

  • Whiteley, H. R., and C. A. Woolfolk: Ferredoxin dependent reactions in Micrococcus lactilyticus. Biochem. biophys. Res. Commun. 9, 517 (1962).

    Google Scholar 

  • Wilson, J., L. O. Krampitz, and C. H. Werkman: Reversibility of a phosphoroclastic reaction. Biochem. J. 42, 598 (1948).

    Google Scholar 

  • Wolfe, R. S., and D. J. O'Kane: Cofactors of the phosphoroclastic reaction of Clostridium butyricum. J. biol. Chem. 205, 755 (1953).

    Google Scholar 

  • ——: Cofactors of the CO2 exchange reaction of Clostridium butyricum. J. biol. Chem. 215, 237 (1955).

    Google Scholar 

  • Zilversmit, D. B., C. Entenman, and M. C. Fishler: On the calculation of “turnover time” and “turnover rate” from experiments involving the use of labeling agents. J. gen. Physiol. 26, 325 (1943).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heer, E., Bachofen, R. Pyruvatstoffwechsel von Clostridium butyricum. Archiv. Mikrobiol. 54, 1–13 (1966). https://doi.org/10.1007/BF00424704

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00424704

Navigation