Current Genetics

, Volume 13, Issue 4, pp 343–349 | Cite as

Common features of three inversions in wheat chloroplast DNA

  • Christopher J. Howe
  • Richard F. Barker
  • Catherine M. Bowman
  • Tristan A. Dyer
Original Articles


We have determined the DNA sequences of regions involved in two of the three inversions known to have occurred during the evolution of wheat chloroplast DNA. This establishes the extent of the second largest of the three inversions. Examination of these sequences suggests that although short repeated sequences are present, the endpoints of the second and third inversions are not associated with repeated sequences as long as those associated with the first inversion. However the endpoints of all three inversions are all adjacent to at least one tRNA gene, and there is evidence that three of the tRNA genes have been subjected to partial duplication, possibly at the time of inversion. This suggests that tRNA genes might be involved with rearrangements of chloroplast DNA, as has also been postulated for mitochondrial DNA.

Key words

Chloroplast DNA tRNA genes Gene duplication Inversion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Biggin MD, Gibson TJ, Hong GF (1983) Proc Natl Acad Sci USA 80:3963–3965Google Scholar
  2. Bonnard G, Weil JH, Steinmetz A (1985) Curr Genet 9:417–422Google Scholar
  3. Bowman CM, Bonnard G, Dyer TA (1983) Theor Appl Genet 65:247–262Google Scholar
  4. Cantatore P, Gadaleta MN, Roberti M, Saccone C, Wilson AC (1987) Nature 329:853–855Google Scholar
  5. Courtice GRM, Bowman CM, Dyer TA, Gray JC (1985) Curr Genet 10:329–333Google Scholar
  6. Efstratiadis A, Posakony JW, Maniatis T, Lawn RM, O'Connell C, Spritz RA, DeRiel JK, Forget BG, Weissman SM, Slightom JL, Blechl AE, Smithies O, Baralle FE, Shoulders CC, Proudfoot NJ (1980) Cell 21:653–668Google Scholar
  7. Farabaugh PJ, Schmeissner U, Hofer M, Miller JH (1978) J Mol Biol 126:847–863Google Scholar
  8. Gross SR, Hsieh T, Levine PH (1984) Cell 38:233–239Google Scholar
  9. Heij HT de, Lustig H, Moeskops D-JM, Bovenberg WA, Bisanz C, Groot GSP (1983) Curr Genet 7:1–6Google Scholar
  10. Heyraud F, Serror P, Kuntz M, Steinmetz A, Heizmann P (1987) Plant Mol Biol 9:485–496Google Scholar
  11. Holschuh K, Bottomley W, Whitfeld PR (1984) Plant Mol Biol 3:313–317Google Scholar
  12. Howe CJ (1985) Curr Genet 10:139–145Google Scholar
  13. Howe CJ (1986) In: Mantell SH, Chapman GP, Strett PFS (eds) The chondriome. Longman, London driome. LongmanGoogle Scholar
  14. Howe CJ, Bowman CM, Dyer TA, Gray JC (1983) Mol Gen Genet 190:51–55Google Scholar
  15. Jeffreys AJ, Wilson V, Thein SL (1985) Nature 314:67–73Google Scholar
  16. Kolodner R, Tewari KK (1979) Proc Natl Acad Sci USA 76: 41–45Google Scholar
  17. Kung SD, Zhu YS, Shen GF (1982) Theor Appl Genet 61: 73–79Google Scholar
  18. Kuntz M, Weil JH, Steinmetz A (1984) Nucleic Acids Res 12: 5037–5047Google Scholar
  19. Maxam AM, Gilbert W (1980) Methods Enzymol 65:499–560Google Scholar
  20. Mubumbila M, Bowman CM, Droog F, Dyer TA, Kuntz M, Weil JH (1985) Plant Mol Biol 4:315–320Google Scholar
  21. Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H (1986) Plant Mol Biol Reporter 4:148–175Google Scholar
  22. Oliver RP, Poulsen C (1984) Carlsberg Res Commun 49:647–673Google Scholar
  23. Palmer JD (1983) Nature 301:92–93Google Scholar
  24. Palmer JD (1985) Annu Rev Genet 19:325–354Google Scholar
  25. Palmer JD, Thompson WF (1982) Cell 29:537–550Google Scholar
  26. Palmer JD, Boynton JE, Gillham NW, Harris EH (1985) Evolution and recombination of the large inverted repeats in Chlamydomonas chloroplast DNA. In: Steinback KE, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring HarborGoogle Scholar
  27. Quigley F, Weil JH (1985) Curr Genet 9:495–503Google Scholar
  28. Rasmussen OF, Stumman BM, Henningsen KW (1984) Nucleic Acids Res 12:9143–9153Google Scholar
  29. Shen GF, Chen K, Wu M, Kung SD (1982) Mol Gen Genet 187:12–18Google Scholar
  30. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayshida N, Matsubayasha T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kata A, Tohdoh N, Shimada H, Sugiura M (1986) Plant Mol Biol Reporter 4:110–147Google Scholar
  31. Smith GR, Schultz DW, Crasemann JM (1980) Cell 19:785–793Google Scholar
  32. Staden R (1982) Nucleic Acids Res 10:2951–2961Google Scholar
  33. Turker MS, Domenico JM, Cummings DJ (1987) J Mol Biol 198:171–185Google Scholar
  34. Willey DL, Huttly AK, Phillips AL, Gray JC (1983) Mol Gen Genet 189:85–89Google Scholar
  35. Zurawski G, Clegg MT, Brown AHD (1984) Genetics 106: 735–749Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Christopher J. Howe
    • 1
  • Richard F. Barker
    • 2
  • Catherine M. Bowman
    • 2
  • Tristan A. Dyer
    • 2
  1. 1.Department of BiochemistryUniversity of CambridgeCambridgeUK
  2. 2.Plant Breeding InstituteTrumpingtonUK

Personalised recommendations