Advertisement

Current Genetics

, Volume 13, Issue 4, pp 327–330 | Cite as

The transformation of protoplasts of Leptosphaeria maculans to hygromycin B resistance

  • M. L. Farman
  • R. P. Oliver
Article

Summary

Conditions are described for the efficient isolation and regeneration of protoplasts of a fungal pathogen of brassicas, Leptosphaeria maculans. Treatment of the protoplasts with DNA of the plasmid pAN7-1 (containing an E. coli hygromycin phosphotransferase gene with Aspergillus nidulans expression signals) and plating under selective conditions resulted in the formation of hygromycin 13-resistant colonies. Southern blot analysis of resistant colonies indicated that single copies of the plasmid had integrated into different sites in the genome. In twelve of the transformants analysed so far, the integration is stable through mitosis. The demonstration of efficient transformation is an essential first step in the molecular analysis of pathogenicity of this commercially important pathogen.

Key words

Brassica Oil-seed rape Phoma lingam Stem canker Ascomycetes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gabrielson RL (1983) Seed Sci Technol 11:749–780Google Scholar
  2. Hammond KM, Lewis BG, Musa TM (1985) Plant Pathol 34:557–565Google Scholar
  3. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York (A laboratory manual)Google Scholar
  4. McGee DC, Petrie GA (1987) Phytopathology 68:625–630Google Scholar
  5. Mishra NC (1985) Adv Genet 23:73–178Google Scholar
  6. Mithen RF, Lewis BG, Fenwick GR (1986) Trans Brit Mycol Soc 87(3):433–440Google Scholar
  7. Musa TM (1981) Host-pathogen interaction between Brassica napus L. spp oleifera (Metzger) Sink, and Leptosphaeria maculans (Desm.) Cos. et de Not. PhD Thesis, University of East Anglia, Norwich, UKGoogle Scholar
  8. Oliver RP, Roberts IN, Harling R, Kenyon L, Punt PJ, Dingemanse MA, van den Hondel CAMJJ (1987) Curr Genet 12:231–233Google Scholar
  9. Peberdy JF (1979) Annu Rev Microbiol 33:21–39Google Scholar
  10. Peberdy JF (1987) Microbiol Sci 4:108–114Google Scholar
  11. Pittinger RC, Wolfe RN, Hoehn MM, Marks PN, Daily WA, McGuire JM (1953) Antibiot Chemother 3:1268–1282Google Scholar
  12. Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, van den Hondel CAMJJ (1987) Gene 56:117–124Google Scholar
  13. Queener SW, Ignolia TD, Skatrud PL, Chapman JL, Kaster KR (1985) In: Schlessinger D (ed) Microbiology. Am Soc Microbiol 468–471Google Scholar
  14. Raeder U, Broda P (1985) Lett Appl Microbiol 1:17–20Google Scholar
  15. Turgeon BG, Garber RC, Yoder OC (1985) Mol Gen Genet 201:450–453Google Scholar
  16. Turgeon BG, Garber RC, Yoder OC (1986) Abstract from the 3rd international symposium for molecular genetics of plantmicrobe interactions. McGill University, Montreal, p 67Google Scholar
  17. Vollmer SJ, Yanofsky C (1986) Proc Natl Acad Sci USA 83:4869–4873Google Scholar
  18. Yelton MM, Hamer JE, Timberlake WE (1984) Proc Natl Acad Sci USA 81:1470–1474Google Scholar
  19. Yoder OC, Weltring K Turgeon BG, VanElten HD (1985) Biology and molecular biology of plant-pathogen interactions. Proc Nato ARW, Dillington College, p 15Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • M. L. Farman
    • 1
  • R. P. Oliver
    • 1
  1. 1.Norwich Molecular Plant Pathology Group, School of Biological SciencesUniversity of East AngliaNorwichUK

Personalised recommendations