Skip to main content
Log in

Geodesic symmetries and invariant star products on Kähler symmetric spaces

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

Starting from work by F. A. Berezin, an earlier paper by the author obtained an invariant star product on every nonexceptional symmetric Kähler space. This would be a generalization to those spaces of the star product on ℝ2n corresponding to Wick quantization. In this Letter we consider, via geometric quantization, the unitary operators corresponding to geodesic symmetries, and we define a Weyl quantization (first defined by Berezin on rank 1 spaces) in a way similar to the way in which the Weyl quantization can be obtained from the Wick quantization on ℝ2n. We then calculate every Hochschild 2-cochain of another invariant star product, equivalent to the Wick one, which would be a generalization to those spaces of the Moyal star product on ℝ2n. M. Cahen and S. Gutt have already provided a theorem of existence and essential unicity of an invariant star product on every irreducible Kähler symmetric space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flato, M., Lichnerowicz, A., and Sternheimer, D., Compt. Math. 31, 47–82 (1975).

    Google Scholar 

  2. Flato, M., Lichnerowicz, A., and Sternheimer, D., J. Math. Phys. 17, 1754–1762 (1976).

    Google Scholar 

  3. Bayen, F., Flato, M., Fronsdal, C., Lichnerowicz, A., and Sterneimer, D., Ann. Phys. 111, 61–110 (1978) and 111, 111–151 (1978).

    Google Scholar 

  4. Vey, J., Comm. Math. Helv. 50, 421–454 (1975).

    Google Scholar 

  5. Lichnerowicz, A., Ann. Di math. 123, 287–330 (1980).

    Google Scholar 

  6. Lichnerowicz, A., Ann. Inst. Fourier 32, 157–209 (1982).

    Google Scholar 

  7. Agarwal, G. and Wolf, E., Phys. Rev. 2, 2161 (1970).

    Google Scholar 

  8. Fronsdal, C., Rep. Math. Phys. 15, 11 (1978).

    Google Scholar 

  9. Moreno, C., ‘*-Products and Geometric Quantization’, (Preprint). ‘Journées d'Analyse Harmonique et Quantification Geométrique’ 22–24 novembre 1984, Lyon, France.

  10. Moreno, C., Lett. Math. Phys. 11, 61 (1986).

    Google Scholar 

  11. Lichnerowicz, A., Lett. Math. Phys. 2, 133 (1977).

    Google Scholar 

  12. De Wilde, M., and Lecompte, P., Lett. Math. Phys. 7, 487 (1983).

    Google Scholar 

  13. Cahen, M. and Gutt, S., Lett. Math. Phys. 6 395 (1982)

    Google Scholar 

  14. Cahen, M. and Gutt, S., C. R. Acad. Sci. Paris 291A, 545 (1980)

    Google Scholar 

  15. Cahen, M. and Gutt, S., Lett. Math. Phys. 5, 219 (1981).

    Google Scholar 

  16. Cortet, J. C., ‘Déformations et alèbres d'opérateurs: Applications en Mécanique Statistique et Théorie des Groupes’, Thèse d'État, Université de Dijon (1983).

  17. Molin, P., ‘Invariance et convariance de déformations de structures sur une variété symplectique. Applications au Groupe de Poincaré’, Thède de 3° cycle, Université de Dijon (1981).

  18. Bayen, F. and Fronsdal, C., ‘Quantization on the Sphere’, Preprint (1978).

  19. Kammerer, J. B., J. Math. Phys. 27, 529 (1986).

    Google Scholar 

  20. Bohnke, G., C. R. Acad. Sci. Paris. 3031, 729 (1986).

    Google Scholar 

  21. Wildberger, N.J., ‘On the Fourier Transform of a Compact, Semisimple, Lie Group’, Preprint, University of Toronto (1986).

  22. Arnal, D. and Cortet, J. C., ‘La notion de ⋆-produit et ses applications aux représentations de groupes’. Dans les Actes des Journées Rélativistes 1979, Université de Angers, France.

  23. Hazewinkel, M. (ed.), Deformations of Algebras and Applications, Nato-Asi, 1–14 June 1986, Il Ciocco, Italy. D. Reidel, Dordrecht, Holland (to appear).

    Google Scholar 

  24. Berezin, F. A., Math. U.S.S.R. Izvestija 9, 341 (1975).

    Google Scholar 

  25. Berezin, F. A., Math. U.S.S.R. Izvestija 3, 1109 (1974).

    Google Scholar 

  26. Grossmann, A. and Huguenin, P., ‘Group Theoretical Aspects of the Wigner-Weyle Isomorphism’, Preprint (1977).

  27. Berezin, F. A., Commun. Math. Phys. 40, 153 (1975).

    Google Scholar 

  28. Moreno, C., ‘Produits ⋆ et analyse spectrale’, Preprint (1981).

  29. Haris-Chandra, Amer. Math. 77, 743 (1955), 78 1 (1956); and 78, 564 (1956).

    Google Scholar 

  30. Knapp, A. W., ‘Bounded Symmetric Domains and Holomorphic Discrete Series’ in W. M.Boothby and G. L.Weiss (eds.), Symmetric Spaces, Pure and Applied Mathematics No. 8. Marcel Dekker, N.Y. (1972).

    Google Scholar 

  31. Moreno, C., Lett. Math. Phys. 12, 217 (1986).

    Google Scholar 

  32. Moreno, C. and Ortega-Navarro, P., Ann. Inst. Henri Poincaré 38, 215 (1983) and Lett. Math. Phys. 7, 181 (1983).

    Google Scholar 

  33. Helgason, S., Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press, New York (1978).

    Google Scholar 

  34. Onofri, E., J. Math. Phys. 16, 1087 (1975).

    Google Scholar 

  35. Rawnsley, J. H., Quart. J. Math. Oxford (2), 28, 403 (1977).

    Google Scholar 

  36. Perelomov, A. M., Commun. Math. Phys. 26, 222 (1972).

    Google Scholar 

  37. Combet, E., Intégrales exponentielles, Lectures Notes in Math. No. 937, Springer-Verlag, Berlin (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreno, C. Geodesic symmetries and invariant star products on Kähler symmetric spaces. Lett Math Phys 13, 245–257 (1987). https://doi.org/10.1007/BF00423452

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423452

Keywords

Navigation