Advertisement

Polymer Bulletin

, Volume 34, Issue 5–6, pp 593–598 | Cite as

Size exclusion behavior of polymers in amide solvents

II. Molecular weight determination of acrylonitrile polymers in N,N-dimethylformamide
  • Chiaki Azuma
  • Marcos L. Dias
  • Eloisa B. Mano
Article

Summary

Size exclusion chromatography (SEC) procedure for the determination of molecular weight and molecular weight distribution of acrylonitrile polymers (PAN) is described. The Mark-Houwink-Sakurada parameters of PAN polymers in DMF and 0.01M LiBr-DMF at 60°C were estimated. The values of a parameters obtained by us for PAN prepared both by persulfate-metabisulfite aqueous system (PAN), and azo-bis-isobutyronitrile in DMF solution (PAN-A) were the same, while for PAN sample containing small amounts of sulfonated pendant groups (PAN-S) was higher. The addition of inorganic salt, such as LiBr, to DMF suppressed the abnormal SEC elution behavior observed in the solvent without the electrolyte although SEC of PAN-A showed almost the same results as in DMF with electrolyte. The universal calibration using monodisperse poly(ethylene oxide) standards as well as application of the Mark-Houwink-Sakurada parameters were satisfactory for the determination of the molecular weights.

Keywords

LiBr Molecular Weight Distribution Ethylene Oxide Acrylonitrile Inorganic Salt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.Y.Cha, J. Polym. Sci., B7,343 (1969).Google Scholar
  2. 2.
    G.Coppola, P.Fabri, B.Pallesi and U.Bianchi, J. Appl. Polym. Sci., 16,2839 (1972).Google Scholar
  3. 3.
    A.S.Kenyon and E.H.Mottus, Appl. Polym. Symp., 25, 57, (1974).Google Scholar
  4. 4.
    S.Mori, Anal. Chem., 55, 2414 (1983).Google Scholar
  5. 5.
    N.D.Hann, J. Polym. Sci., Polym. Chem., 15, 1331 (1977).Google Scholar
  6. 6.
    D.R.Scheuing, J. Appl. Polym. Sci., 29, 2819 (1984).Google Scholar
  7. 7.
    P.R.Ludlan and J.G.King, J. Appl. Polym. Sci., 29, 3863 (1984).Google Scholar
  8. 8.
    B.Riedl, L.Calvé and L.Blanchette, Holzforschung, 42, 5, 315 (1988).Google Scholar
  9. 9.
    Z.Grubisic, P.Remp and H.Benoit, Polym. Letter, 5, 753 (1967)Google Scholar
  10. 10.
    A.Domard, M.Rinaudo and C.Rochas, J. Polym. Sci., Polym. Phys., 17, 673 (1979).Google Scholar
  11. 11.
    C.Azuma, M.L.Dias and E.B.Mano, Macromol. Chem., Macromol. Symp., 2, 169 (1986).Google Scholar
  12. 12.
    C.Azuma, M.L.Dias and E.B.Mano, part1 (submitted to Polym.Bull.).Google Scholar
  13. 13.
    R.Cleland and W.H.Stockmayer, J. Polym. Sci. 17, 473 (1955).Google Scholar
  14. 14.
    E.A.Collins, J.Bares and F.W.Billmeyer,Jr., Experiments in Polymer Science, John Wiley, N.Y., 1973, p.398.Google Scholar
  15. 15.
    A.R.Weis and E.Cohn-Ginsberg, Polym. Letters, 7, 379 (1969).Google Scholar
  16. 16.
    W.R.Krigbaum and A.M.Kotliar, J. Polym. Sci., 32, 379 (1985).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Chiaki Azuma
    • 2
    • 1
  • Marcos L. Dias
    • 3
  • Eloisa B. Mano
    • 3
  1. 1.The University of the AirJapan
  2. 2.Tokyo Daiichi Gakushu CenterTokyoJapan
  3. 3.Instituto de MacromoléculasUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations