Skip to main content
Log in

Construction of a new catabolic pathway for d-fructose in Escherichia coli K12 using an l-sorbose-specific enzyme from Klebsiella pneumoniae

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Starting with a fruK (formerly fpk) mutant of Escherichia coli K12 lacking d-fructose-1-phosphate kinase (E.C. 2.7.1.3.), fructose positive derivatives were isolated after introduction of the cloned gene sorE from Klebsiella pneumoniae coding for an l-sorbose-1-phosphate reductase. The new pathway was shwon to proceed from d-fructose via d-fructose-1-phosphate and d-mannitol-1-phosphate to d-fructose 6-phosphate. It involves a transport system and enzymes encoded in the fru and the mtl operons from E. coli K12 as well as in the sor operon from K. pneumoniae respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson RL, Simkins RA (1982) l-Sorbose-1-phosphate reductase. Methods Enzymol 89:248–251

    Google Scholar 

  • Bachmann BJ (1983) Linkage map of Escherichia coli K12, Edition 7. Microbiol Rev 47:180–230

    Google Scholar 

  • Boos W, Bantlow C, Benner D, Roller E (1983) cir, a gene conferrring resistance to colicin I maps between mgl and fpk on the Escherichia coli chromosome. Mol Gen Genet 191:401–406

    Google Scholar 

  • Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472

    Google Scholar 

  • Brosius J, Holy A (1984) Regulation of ribosomal RNA promoters with a synthetic lac operator. Proc Natl Acad Sci USA 81:6929–6933

    Google Scholar 

  • Ebner R, Lengeler JW (1988) DNA sequence of the gene scrA encoding sucrose transport protein Enzyme IIScr of the phosphotransferase system from enteric bacteria: homology of the enzyme IIScr and enzyme IIBgl proteins. Mol Microbiol 2:9–17

    Google Scholar 

  • Ferenci T, Kornberg HL (1973) The utilization of fructose by Escherichia coli. Properties of a mutant deficient in fructose-1-phosphate kinase activity. Biochem J 132:341–347

    Google Scholar 

  • Fraenkel DG (1968) The phosphoenolpyruvate initiated pathway of fructose metabolism in E. coli. J Biol Chem 243:6458–6463

    Google Scholar 

  • Geerse RH, Izzo F, Postma PW (1989) The PEP:fructose phosphotransferase system in Salmonella typhimurium: FPr combines EIIIFru and pseudo-HPr activities. Mol Gen Genet 216:517–525

    Google Scholar 

  • Jones-Mortimer MC, Kornberg HL (1974) Genetic analysis of the fructose utilization by Escherichia coli. Proc R Soc Lond B 187:121–131

    Google Scholar 

  • Kelker NE, Anderson RL (1972) Evidence for vectorial phosphorylation of d-fructose by intact cells of Aerobacter aerogenes. J Bacteriol 112:1441–1443

    Google Scholar 

  • Kelker NE, Simkins RA, Anderson RL (1972) Pathway of l-sorbose metabolism in Aerobacter aerogenes. J Biol Chem 247:1479–1483

    Google Scholar 

  • Kornberg HL, Reeves RE (1972) Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem. J. 128:1339–1344

    Google Scholar 

  • Lengeler J (1975) Mutations affecting transport of the hexitols d-mannitol, d-glucitol and galactitol in Escherichia coli K12: Isolation and mapping. J Bacteriol 124:26–38

    Google Scholar 

  • Lengeler J, Lin ECC (1972) Reversal of the mannitol sorbitol diauxie in Escherichia coli. J Bacteriol 112:840–848

    Google Scholar 

  • Lengeler J, Auburger AM, Mayer R, Pecher A (1981) The phosphoenol-pyruvate-dependent carbohydrate: phosphotransferase system enzymes II as chemoreceptors in chemotaxis of Escherichia coli K12. Mol Gen Genet 183:163–170

    Google Scholar 

  • Lengeler J, Steinberger H (1978) Analysis of the regulatory mechanisms controlling the synthesis of the hexitol transport systems in E. coli K12. Mol Gen Genet 146:163–169

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin-Phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning — a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

    Google Scholar 

  • Miller JH (1982) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA

    Google Scholar 

  • Mortlock RP (1982) Metabolic acquisitions through laboratory selection. Annu Rev Microbiol 36:259–284

    Google Scholar 

  • Postma PW, Lengeler JW (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase systems in bacteria. Microbiol Rev 49:232–269

    Google Scholar 

  • Riley M, Anilionis A (1978) Evolution of the bacterial genome. Annu Rev Microbiol 32:519–560

    Google Scholar 

  • Sancar A, Hack AM, Rupp WD (1979) Simple method for identification of plasmid-coded proteins. J Bacteriol 137:692–693

    Google Scholar 

  • Slater AC, Jones-Mortimer MC, Kornberg HL (1981) l-Sorbose phosphorylation in Escherichia coli K12. Biochim Biophys Acta 646:365–367

    Google Scholar 

  • Solomon E, Lin ECC (1972) Mutation affecting the dissimilation of mannitol by Escherichia coli. J Bacteriol 111:566–574

    Google Scholar 

  • Sprenger GA, Lengeler JW (1984) l-Sorbose metabolism in Klebsiella pneumoniae and Sor+ derivatives of Escherichia coli K12 and chemotaxis towards sorbose. J Bacteriol 157:39–45

    Google Scholar 

  • Sprenger GA, Lengeler JW (1987) Mapping of the sor genes for l-sorbose degradation in the chromosome of Klebsiella pneumoniae. Mol Gen Genet 209:352–359

    Google Scholar 

  • Waygood EB, Mattoo L, Peri KG (1984) Phosphoproteins and the phosphoenolpyruvate: sugar phosphotransferase system in Salmonella typhimurium and Escherichia coli: evidence for IIIMan, IIIFru, IIIGlucitol, and the phosphorylation of enzyme IIMannitol and enzyme IIN-acetylglucosamine. J Biol Chem 25:139–159

    Google Scholar 

  • Woodward MJ, Charles HP (1982) Genes for l-sorbose utilization in Escherichia coli. J Gen Microbiol 128:1969–1980

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wöhrl, B.M., Sprenger, G.A. & Lengeler, J.W. Construction of a new catabolic pathway for d-fructose in Escherichia coli K12 using an l-sorbose-specific enzyme from Klebsiella pneumoniae . Arch. Microbiol. 154, 162–167 (1990). https://doi.org/10.1007/BF00423327

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423327

Key words

Navigation