Advertisement

Archives of Microbiology

, Volume 141, Issue 2, pp 170–176 | Cite as

Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa

  • Rainer Früh
  • Dieter Haas
  • Thomas Leisinger
Original Papers

Abstract

Two classes of ornithine-nonutilizing (oru) mutants of Pseudomonas aeruginosa PAO were investigated. Strains carrying the oru-310 mutation were entirely unable to grow on l-ornithine as the only carbon and nitrogen source and were affected in the assimilation of a variety of nitrogen sources (e.g., amino acids, nitrate). The oru-310 mutation caused changes in the regulation of the catabolic NAD-dependent glutamate dehydrogenase; this enzyme was no longer inducible by glutamate but instead could be induced by ammonia. The oru-310 locus was cotransducible with car-9 and tolA in the 10 min region of the chromosome. An oru-314 mutant was severely handicapped in ornithine medium but could grow when a good carbon source was added; the mutant also showed pleiotropic growth effects related to nitrogen metabolism. The oru-314 mutation affected the regulation of the anabolic NADP-dependent glutamate dehydrogenase, which was no longer repressed by glutamate but showed normal derepression in the presence of ammonia. The oru-314 locus was mapped by transduction near met-9011 at 55 min. Both oru mutants could grow on l-glutamate, l-proline, or l-ornithine amended with 2-oxoglutarate, albeit slowly. We speculate that insufficient 2-oxoglutarate concentrations might account, at least in part, for the Oru- phenotype of the mutants.

Key words

Pseudomonas aeruginosa Ornithine catabolism Glutamate metabolism Nitrogen metabolism, control of Ornithine non-utilizing mutants of P. aeruginosa Genetic mapping of oru loci in P. aeruginosa 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009Google Scholar
  2. Clarke PH, Ornston LN (1975) Metabolic pathways and regulation: parts I and II. In: Clarke PH, Richmond MH (eds) Genetics and biochemistry of Pseudomonas. Wiley and Son, London, pp 191–340Google Scholar
  3. Haas D, Holloway BW (1978) Chromosome mobilization by the R plasmid R 68.45: a tool in Pseudomonas genetics. Mol Gen Genet 158:229–237Google Scholar
  4. Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22Google Scholar
  5. Haas D, Matsumoto H, Moretti P, Stalon V, Mercenier A (1984) Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet 193:437–444Google Scholar
  6. Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443Google Scholar
  7. Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102Google Scholar
  8. Janssen DB, op de Camp HJM, Leenen PJM, van der Drift C (1980) The enzymes of the ammonia assimilation in Pseudomonas aeruginosa. Arch Microbiol 124:197–203Google Scholar
  9. Janssen DB, Herst PM, Joosten HMLJ, van der Drift C (1981) Nitrogen control in Pseudomonas aeruginosa: a role for glutamine in the regulation of the synthesis of NADP-dependent glutamate dehydrogenase, urease and histidase. Arch Microbiol 128:398–402Google Scholar
  10. Janssen DB, Habets WJA, Marugg JT, van der Drift C (1982a) Nitrogen control in Pseudomonas aeruginosa: mutants affected in the synthesis of glutamine synthetase, urease and NADP-dependent glutamate dehydrogenase. J Bacteriol 151:22–28Google Scholar
  11. Janssen DB, Joosten HMLJ, Herst PM, van der Drift C (1982b) Characterization of glutamine-requiring mutants of Pseudomonas aeruginosa. J Bacteriol 151:1176–1183Google Scholar
  12. Jeter RM, Ingraham JL (1984) Isolation and characterization of mutant Pseudomonas aeruginosa strains unable to assimilate nitrate. Arch Microbiol 138:124–130Google Scholar
  13. Jeter RM, Sias SR, Ingraham JL (1984) Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation. J Bacteriol 157:673–677Google Scholar
  14. Leisinger T, Haas D, Hegarty MP (1972) Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta 262:214–219Google Scholar
  15. Leisinger T, O'Sullivan C, Haas D (1974) Arginine analogues: effect on growth and on the first two enzymes of the arginine pathway in Pseudomonas aeruginosa. J Gen Microbiol 84:253–260Google Scholar
  16. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  17. Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Ann Rev Genet 16:135–168Google Scholar
  18. Matsumoto H, Tazaki T (1975) Serotypic recombination in Pseudomonas aeruginosa. In: Mitsuhashi S, Hashimoto H (eds) Microbial drug resistance. University of Tokyo Press, Tokyo, pp 281–290Google Scholar
  19. Mee BJ, Lee BTO (1967) An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55:709–722Google Scholar
  20. Meers JL, Tempest DW, Brown CM (1970) Glutamine (amide): 2-oxoglutarate aminotransferase oxidoreductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:187–194Google Scholar
  21. Meile L, Leisinger T (1982) Purification and properties of the bifunctional proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa. Eur J Biochem 129:67–75Google Scholar
  22. Meile L, Soldati L, Leisinger T (1982) Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch Microbiol 132:189–193Google Scholar
  23. Mercenier A, Simon JP, Haas D, Stalon V (1980) Catabolism of l-arginine by Pseudomonas aeruginosa. J Gen Microbiol 116:381–389Google Scholar
  24. Meyer JM, Stadtman ER (1981) Glutamine synthetase of pseudomonads: some biochemical and physicochemical properties. J Bacteriol 146:705–712Google Scholar
  25. Mills BJ, Holloway BW (1976) Mutants of Pseudomonas aeruginosa that show specific hypersensitivity to aminoglycosides. Antimicrob Agents Chemother 10:411–416Google Scholar
  26. Ornston LN, Ornston MK, Chou G (1969) Isolation of spontaneous mutant strains of Pseudomonas putida. Biochem Biophys Res Commun 36:179–184Google Scholar
  27. Rella M, Haas D (1982) Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 22:242–249Google Scholar
  28. Richard C (1965) Mesure de l'activité uréasique des Proteus au moyen de la réaction phénol-hypochlorite de Berthelot. Ann Inst Past 109:516–524Google Scholar
  29. Sano Y, Kageyama M (1981) Purification and properties of an S-type pyocin, pyocin AP41. J Bacteriol 146:733–739Google Scholar
  30. Soda K, Ohshima M, Yamamoto T (1972) Purification and properties of isoenzymes of glutaminase from Pseudomonas aeruginosa. Biochem Biophys Res Commun 46:1278–1284Google Scholar
  31. Soldati L, Leisinger T, Haas D (1982) Mapping of genes for proline and ornithine utilization in Pseudomonas aeruginosa. Experientia 38:1379Google Scholar
  32. Soldati L, Crockett R, Carrigan JM, Leisinger T, Holloway BW, Haas D (1984) Revised locations of the hisI and pru (proline utilization) genes on the Pseudomonas aeruginosa chromosome map. Mol Gen Genet 193:431–436Google Scholar
  33. Stanisich VA, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108Google Scholar
  34. Voellmy R, Leisinger T (1975) Dual role of N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol 122:799–809Google Scholar
  35. Voellmy R, Leisinger T (1976) Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol 128:722–729Google Scholar
  36. Voellmy R, Leisinger T (1978) Regulation of enzyme synthesis in the arginine biosynthesis pathway of Pseudomonas aeruginosa. J Gen Microbiol 109:25–35Google Scholar
  37. Watson JM, Holloway BW (1976) Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol 125:780–786Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Rainer Früh
    • 1
  • Dieter Haas
    • 1
  • Thomas Leisinger
    • 1
  1. 1.Mikrobiologisches InstitutEidgenössische Technische Hochschule ZürichZürichSwitzerland

Personalised recommendations