Skip to main content
Log in

Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Two classes of ornithine-nonutilizing (oru) mutants of Pseudomonas aeruginosa PAO were investigated. Strains carrying the oru-310 mutation were entirely unable to grow on l-ornithine as the only carbon and nitrogen source and were affected in the assimilation of a variety of nitrogen sources (e.g., amino acids, nitrate). The oru-310 mutation caused changes in the regulation of the catabolic NAD-dependent glutamate dehydrogenase; this enzyme was no longer inducible by glutamate but instead could be induced by ammonia. The oru-310 locus was cotransducible with car-9 and tolA in the 10 min region of the chromosome. An oru-314 mutant was severely handicapped in ornithine medium but could grow when a good carbon source was added; the mutant also showed pleiotropic growth effects related to nitrogen metabolism. The oru-314 mutation affected the regulation of the anabolic NADP-dependent glutamate dehydrogenase, which was no longer repressed by glutamate but showed normal derepression in the presence of ammonia. The oru-314 locus was mapped by transduction near met-9011 at 55 min. Both oru mutants could grow on l-glutamate, l-proline, or l-ornithine amended with 2-oxoglutarate, albeit slowly. We speculate that insufficient 2-oxoglutarate concentrations might account, at least in part, for the Oru- phenotype of the mutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009

    Google Scholar 

  • Clarke PH, Ornston LN (1975) Metabolic pathways and regulation: parts I and II. In: Clarke PH, Richmond MH (eds) Genetics and biochemistry of Pseudomonas. Wiley and Son, London, pp 191–340

    Google Scholar 

  • Haas D, Holloway BW (1978) Chromosome mobilization by the R plasmid R 68.45: a tool in Pseudomonas genetics. Mol Gen Genet 158:229–237

    Google Scholar 

  • Haas D, Holloway BW, Schamböck A, Leisinger T (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Google Scholar 

  • Haas D, Matsumoto H, Moretti P, Stalon V, Mercenier A (1984) Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet 193:437–444

    Google Scholar 

  • Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443

    Google Scholar 

  • Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    Google Scholar 

  • Janssen DB, op de Camp HJM, Leenen PJM, van der Drift C (1980) The enzymes of the ammonia assimilation in Pseudomonas aeruginosa. Arch Microbiol 124:197–203

    Google Scholar 

  • Janssen DB, Herst PM, Joosten HMLJ, van der Drift C (1981) Nitrogen control in Pseudomonas aeruginosa: a role for glutamine in the regulation of the synthesis of NADP-dependent glutamate dehydrogenase, urease and histidase. Arch Microbiol 128:398–402

    Google Scholar 

  • Janssen DB, Habets WJA, Marugg JT, van der Drift C (1982a) Nitrogen control in Pseudomonas aeruginosa: mutants affected in the synthesis of glutamine synthetase, urease and NADP-dependent glutamate dehydrogenase. J Bacteriol 151:22–28

    Google Scholar 

  • Janssen DB, Joosten HMLJ, Herst PM, van der Drift C (1982b) Characterization of glutamine-requiring mutants of Pseudomonas aeruginosa. J Bacteriol 151:1176–1183

    Google Scholar 

  • Jeter RM, Ingraham JL (1984) Isolation and characterization of mutant Pseudomonas aeruginosa strains unable to assimilate nitrate. Arch Microbiol 138:124–130

    Google Scholar 

  • Jeter RM, Sias SR, Ingraham JL (1984) Chromosomal location and function of genes affecting Pseudomonas aeruginosa nitrate assimilation. J Bacteriol 157:673–677

    Google Scholar 

  • Leisinger T, Haas D, Hegarty MP (1972) Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta 262:214–219

    Google Scholar 

  • Leisinger T, O'Sullivan C, Haas D (1974) Arginine analogues: effect on growth and on the first two enzymes of the arginine pathway in Pseudomonas aeruginosa. J Gen Microbiol 84:253–260

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Magasanik B (1982) Genetic control of nitrogen assimilation in bacteria. Ann Rev Genet 16:135–168

    Google Scholar 

  • Matsumoto H, Tazaki T (1975) Serotypic recombination in Pseudomonas aeruginosa. In: Mitsuhashi S, Hashimoto H (eds) Microbial drug resistance. University of Tokyo Press, Tokyo, pp 281–290

    Google Scholar 

  • Mee BJ, Lee BTO (1967) An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55:709–722

    Google Scholar 

  • Meers JL, Tempest DW, Brown CM (1970) Glutamine (amide): 2-oxoglutarate aminotransferase oxidoreductase (NADP), an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol 64:187–194

    Google Scholar 

  • Meile L, Leisinger T (1982) Purification and properties of the bifunctional proline dehydrogenase/1-pyrroline-5-carboxylate dehydrogenase from Pseudomonas aeruginosa. Eur J Biochem 129:67–75

    Google Scholar 

  • Meile L, Soldati L, Leisinger T (1982) Regulation of proline catabolism in Pseudomonas aeruginosa PAO. Arch Microbiol 132:189–193

    Google Scholar 

  • Mercenier A, Simon JP, Haas D, Stalon V (1980) Catabolism of l-arginine by Pseudomonas aeruginosa. J Gen Microbiol 116:381–389

    Google Scholar 

  • Meyer JM, Stadtman ER (1981) Glutamine synthetase of pseudomonads: some biochemical and physicochemical properties. J Bacteriol 146:705–712

    Google Scholar 

  • Mills BJ, Holloway BW (1976) Mutants of Pseudomonas aeruginosa that show specific hypersensitivity to aminoglycosides. Antimicrob Agents Chemother 10:411–416

    Google Scholar 

  • Ornston LN, Ornston MK, Chou G (1969) Isolation of spontaneous mutant strains of Pseudomonas putida. Biochem Biophys Res Commun 36:179–184

    Google Scholar 

  • Rella M, Haas D (1982) Resistance of Pseudomonas aeruginosa PAO to nalidixic acid and low levels of β-lactam antibiotics: mapping of chromosomal genes. Antimicrob Agents Chemother 22:242–249

    Google Scholar 

  • Richard C (1965) Mesure de l'activité uréasique des Proteus au moyen de la réaction phénol-hypochlorite de Berthelot. Ann Inst Past 109:516–524

    Google Scholar 

  • Sano Y, Kageyama M (1981) Purification and properties of an S-type pyocin, pyocin AP41. J Bacteriol 146:733–739

    Google Scholar 

  • Soda K, Ohshima M, Yamamoto T (1972) Purification and properties of isoenzymes of glutaminase from Pseudomonas aeruginosa. Biochem Biophys Res Commun 46:1278–1284

    Google Scholar 

  • Soldati L, Leisinger T, Haas D (1982) Mapping of genes for proline and ornithine utilization in Pseudomonas aeruginosa. Experientia 38:1379

    Google Scholar 

  • Soldati L, Crockett R, Carrigan JM, Leisinger T, Holloway BW, Haas D (1984) Revised locations of the hisI and pru (proline utilization) genes on the Pseudomonas aeruginosa chromosome map. Mol Gen Genet 193:431–436

    Google Scholar 

  • Stanisich VA, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108

    Google Scholar 

  • Voellmy R, Leisinger T (1975) Dual role of N 2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol 122:799–809

    Google Scholar 

  • Voellmy R, Leisinger T (1976) Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol 128:722–729

    Google Scholar 

  • Voellmy R, Leisinger T (1978) Regulation of enzyme synthesis in the arginine biosynthesis pathway of Pseudomonas aeruginosa. J Gen Microbiol 109:25–35

    Google Scholar 

  • Watson JM, Holloway BW (1976) Suppressor mutations in Pseudomonas aeruginosa. J Bacteriol 125:780–786

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Früh, R., Haas, D. & Leisinger, T. Altered control of glutamate dehydrogenases in ornithine utilization mutants of Pseudomonas aeruginosa . Arch. Microbiol. 141, 170–176 (1985). https://doi.org/10.1007/BF00423280

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423280

Key words

Navigation