Skip to main content
Log in

Gene specific priming of complementary DNA synthesis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

DNA, complementary to chicken globin mRNA was synthesized using either Avian Myeloblastosis virus reverse transcriptase, or E. coli DNA polymerase I. Transcriptase cDNA sediments at 9 S on sucrose gradients, and is 620 nucleotides in length, representing a complete copy of globin mRNA template. In contrast, Polymerase I cDNA sediments at 4 S, is 100 to 200 nucleotides in length, and is a copy of a small region at the 3′ (poly A) end of globin mRNA.

Similarly, Transcriptase cDNA and Polymerase I cDNA hybridize to globin mRNA template with characteristic, individual Cr o t 1/2 values. The Cr o t 1/2 value for Transcriptase cDNA hybridization is 7×10-4 mol s l-1, and that for Polymerase I cDNA is 5 x 10-3.

This work shows that Avian Myeloblastosis virus reverse transcriptase can use Polymerase I cDNA to prime further cDNA synthesis along the mRNA template. The product of extended cDNA synthesis is identical in length and hybridization properties to oligo (dT) primed transcriptase cDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cDNA:

complementary DNA

Transcriptase:

Avian Myeloblastosis virus reverse transcriptase

Polymerase I:

E. coli DNA Polymerase I

Cr o t :

product of initial RNA concentration (moles nucleotide, litre-1) and time (sec)

References

  1. Verma, Y. M., Temple, G. F., Fan, H., and Baltimore, D., Nature New Biol. 235, 163 (1972).

    Google Scholar 

  2. Kacian, D. L., Spiegelman, S., Bank, A., Terada, M., Metafora, S., Dow, L., and Marks, P. A., Nature New Biol. 235 (1972).

  3. Proudfoot, N. J. and Brownlee, G. G., FEBS Letters 38, 179 (1974).

    Google Scholar 

  4. Falvey, A. K., Kantor, J. A. Robert-Guroff, M. G., Picciano, D. J., Weiss, G. B., Vavich, J. M. and Anderson, W. F., J. Biol. Chem. 249, 7049 (1974).

    Google Scholar 

  5. Proudfoot, N. J. and Brownlee, G. G. Nature 252, 359 (1974).

    Google Scholar 

  6. Pemberton, R. E., Housman, D., Lodish, H. F., and Baglioni, C., Nature New Biol. 235, 99 (1972).

    Google Scholar 

  7. Kemp, D. J., Nature 254, 574 (1975).

    Google Scholar 

  8. Pinder, J. C., Staynov, D. Z., and Gratzer, W. B., Biochemistry 13, 5373 (1974).

    Google Scholar 

  9. Ward, S., Wilson, D. L., and Gillian, J. J., Anal. Biochem. 38, 90 (1970).

    Google Scholar 

  10. Wellauer, P. K. and Dawid, I. B., Proc. Nat. Acad. Sci. U.S.A. 70, 2827 (1973).

    Google Scholar 

  11. Hackett, P.B. and Sauerbier, W., J. Mol. Biol. 91, 235 (1975).

    Google Scholar 

  12. Liau, M. C. and Hurlbert, R. B., J. Mol. Biol. 98, 321 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, R.J., Wells, J.R.E. Gene specific priming of complementary DNA synthesis. Mol Biol Rep 3, 167–173 (1976). https://doi.org/10.1007/BF00423231

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423231

Keywords

Navigation