Diurnal variations of protein and electrolyte concentrations and of acid-base status in plasma and red cells of normal man

  • D. Böning
  • U. Schweigart
  • M. Kunze


Venous blood was sampled in 3-h intervals from 5 men and 4 women under conditions of normal daily activity during 24 h (Series I). Hematocrit, hemoglobin concentration in blood and red cells, sodium, potassium, magnesium and chloride concentrations in plasma and red cells, protein, calcium and inorganic phosphate concentrations and standard bicarbonate in plasma, pH in blood and red cells, pCO2 in blood were measured or calculated. Most concentration curves showed biphasic patterns with night minima which were significant for hemoglobin, hematocrit and pH in blood, protein, sodium, calcium and standard bicarbonate in plasma, potassium and pH in red cells. Inorganic phosphate in plasma alone exhibited a definite day minimum. A second series (6 subjects) with measurements made only between 06.00 and 12.00 showed changes similar to those in Series I with an additional small increase of red cell sodium concentration at noon. In a third series, where 6 subjects remained in a recumbent position up to midday, the morning increase of [Hb], Hct, pH and standard bicarbonate was clearly reproducible.

The main cause of the similar behavior of the different quantities seems to be a water shift into plasma and red cells during the night.

Key words

Acid-Base Equilibrium Blood Circadian Rhythm Electrolytes Erythrocytes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astrup, P.: Erkennung der Störungen des Säure-Basen-Stoffwechsels und ihre klinische Bedeutung. Klin. Wschr. 35, 749–753 (1957)Google Scholar
  2. Bärtschi, F., Haab, P., Held, D. R.: Reliability of blood pCO2 measurements by the CO2-electrode, the whole blood CO2/pH method and the Astrup-method. Resp. Physiol. 10, 121–131 (1970)Google Scholar
  3. Buchsbaum, M., Harris, E. K.: Diurnal variations in serum and urine electrolytes. J. appl. Physiol. 30, 27–35 (1971)Google Scholar
  4. Carruthers, B. M., Copp, D. H., McIntosh, H. W.: Diurnal variation in urinary excretion of calcium and phosphate and its relation to plasma levels. J. Lab. clin. Med. 63, 959–968 (1964)Google Scholar
  5. Cranston, W. J., Brown, J. W.: Diurnal variation in plasma volume in normal and hypertensive subjects. Clin. Sci. 25, 107–114 (1963)Google Scholar
  6. Eppendorf: Photometrische Methoden, HamburgGoogle Scholar
  7. Finlayson, D. C., Dagher, F. J., Vandam, L. D.: Diurnal variation in blood volume of man. J. surg. Res. 416, 286–288 (1964)Google Scholar
  8. Gollwitzer-Meier, K., Kroetz, Ch.: Über den Blutchemismus im Schlaf. Biochem. Z. 154, 82 (1924)Google Scholar
  9. Hastings, A. B., Eisele, Ch. W.: Diurnal variations in the acid-base balance. Proc. Soc. exp. Biol. (N.Y.) 4, 308–312 (1940)Google Scholar
  10. Haury, H.: Die photometrische Bestimmung von Magnesium im Serum. Arzneimittel-Forsch. 15, 579–581 (1965)Google Scholar
  11. Heidland, A., Klütsch, K., Hochrein, H.: Pseudohypocalcämie im heparinisierten Blut. Klin. Wschr. 39, 51–53 (1961)Google Scholar
  12. Herbinger, W.: Extra- und intrazelluläre Elektrolytstudien am Zellmodell des Erythrozyten. 2. Teil. Wien. med. Wschr. 115, 476–483 (1965)Google Scholar
  13. Hinsberg, K., Lang, K.: Medizinische Chemie für den klinischen und theoretischen Gebrauch. München-Berlin-Wien: Urban u. Schwarzenberg 1957Google Scholar
  14. Holmquist, A. G.: Tägliche cyclische Schwankungen im Calciumgehalt des Blutes bei Mensch und Kaninchen. Z. ges. exp. Med. 13, 370–377 (1934)Google Scholar
  15. Jubiz, W., Canterbury, J. M., Reiss, E., Tyler, F. H.: Circadian rhythm in serum parathyroid hormone concentration in human subjects: Correlation with serum calcium, phosphate, albumin and growth hormone levels. J. clin. Invest. 51, 2040–2046 (1972)Google Scholar
  16. Lang, K.: Eine Verbesserung der Methodik der Chloridtitration im Blut. Biochem. Z. 290, 289–290 (1937)Google Scholar
  17. Magnussen, G.: Studies on the respiration during sleep. A contribution to the physiology of the sleep function. London: Lewis 1944Google Scholar
  18. McLean, F. C., Hastings, A. B.: Chemical estimation and significance of calcium-ion concentrations in the blood. Amer. J. med. Sci. 189, 601–613 (1935)Google Scholar
  19. Mills, J. N.: Changes in the alveolar carbon dioxide tension by night and during sleep. J. Physiol. (Lond.) 122, 66–80 (1953)Google Scholar
  20. Mills, J. N.: Human circadian rhythms. Physiol. Rev. 46, 128–171 (1966)Google Scholar
  21. Muller, A. F., Manning, E. L., Riondel, A. M.: Influence of position and activity on the secretion of aldosterone. Lancet 1958, 711–713Google Scholar
  22. Renbourn, E. T.: Variation, diurnal and over longer periods of time in blood hemoglobin, hematocrit, plasma protein, erythrocyte sedimentation rate, and blood chloride. J. Hyg. (Lond.) 45, 455–467 (1947)Google Scholar
  23. Rune, S. J., Lassen, N. A.: Diurnal variations in the acid-base balance of blood. Scand. J. clin. Lab. Invest. 22, 151–156 (1968)Google Scholar
  24. Schulz, D., Rathschlag-Schäfer, A. M.: Änderungen der Sauerstoffaffinität und Kationenkonzentration des Blutes während 24 Stunden. Pflügers Arch. 307, R11 (1969)Google Scholar
  25. Schweigart, U., Böning, D., Tibes, U., Hemmer, B.: The influence of physical activity on the 2,3-diphosphoglycerate concentration of erythrocytes and the oxygen dissociation curve in men. In: Gerlach, E., Moser, K., Deutsch, E., Willmanns, W., Eds., Erythrocytes, Thrombocytes, Leukocytes, IInd Int. Symp., Vienna 1972, p. 168–170. Stuttgart: Thieme 1973Google Scholar
  26. Seaman, G. V. F., Engel, R., Swank, R. L., Hissen, W.: Circadian periodicity in some physicochemical parameters of circulating blood. Nature (Lond.) 207, 833–835 (1965)Google Scholar
  27. Shock, W. N., Hastings, B. A.: Studies of the acid-base balance of the blood. III. Variations in the acid-base balance of the blood in normal individuals. J. biol. Chem. 104, 585–600 (1934)Google Scholar
  28. Siggaard-Andersen, O.: The acid-base status of the blood. Copenhagen: Munksgaard 1964Google Scholar
  29. Sirota, J. H., Baldwin, D. S., Villarreal, H.: Diurnal variations of renal function in man. J. clin. Invest. 29, 187–192 (1950)Google Scholar
  30. Stamm, D.: Tagesschwankungen der Normalbereiche diagnostisch wichtiger Blutbestandteile. Verh. dtsch. Ges. inn. Med. 73, 982–989 (1967)Google Scholar
  31. Stanbury, W., Thomsen, M.: Diurnal variations in electrolyte excretion. Clin. Sci. 10, 267–293 (1951)Google Scholar
  32. Thompsen, W. O., Thompsen, P. K.: The effect of posture upon the composition and volume of the blood. J. clin. Invest. 5, 573–593 (1928)Google Scholar
  33. Van Slyke, D., Hastings, D., Hiller, A. B., Sendroy, J.: The amounts of alkali bound by serum albumin and globulin. J. biol. Chem. 79, 769–780 (1928)Google Scholar
  34. Weber, E.: Grundriß der biologischen Statistik. Stuttgart: Fischer 1967Google Scholar
  35. Webster, W. jun.: A simple microphotometric method for the determination of serum calcium. Amer. J. clin. Path. 37, 330–333 (1962)Google Scholar
  36. Wesson, L. G.: Electrolyte excretion in relation to diurnal cycles of renal function. Medicine (Baltimore) 43, 547–592 (1964)Google Scholar
  37. Wolfe, L. K., Gordon, R. D., Island, D. P., Liddle, G. W.: An analysis of factors determining the circadian pattern of aldosterone excretion. J. clin. Endocr. 26, 1261–1266 (1966)Google Scholar
  38. Zeiss: Photometrische Analysen Medizin. Oberkochen: Carl Zeiss 1961Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • D. Böning
    • 1
  • U. Schweigart
    • 1
  • M. Kunze
    • 1
  1. 1.Physiologisches Institut der Deutschen Sporthochschule KölnFederal Republic of Germany

Personalised recommendations