Advertisement

A new approach for the assessment of endurance work

  • J. Sen Gupta
  • S. S. Verma
  • N. T. Joseph
  • N. C. Majumdar
Article

Abstract

Thirteen young healthy motivated subjects were asked to work at fixed rates on bicycle ergometer till exhaustion. Different rates of work were given on different days at intervals of 2–3 days to avoid training effect or the effects of previous work. Resting O2 consumption, minute ventilation, heart rate and maximum voluntary ventilation were noted before the exercise commenced and the exercise ventilation and heart rate were noted during endurance effort at suitable intervals with a view to predicting endurance time in prolonged physical effort. Analysis of 30 sets of observations has revealed that endurance time is hyperbolically related to both exercise dyspnoea above its resting value and exercise heart rate above the resting value expressed as percentage of the individuals' maximum value. The multiple correlation coefficient between observed and estimated endurance times, expressed logarithmically in terms of these two indices, is 0.9652 which is highly significant (P 0.001). It has been conclusively established that a combined index of cardiorespiratory strains during maximal or near maximal efforts is superior to any single stress index as commonly employed, and hence a nomogram has been suggested from which the endurance time could be readily and reliably predicted from observed values of exercise dyspnoea and heart rate (as percentage of HRmax).

Key words

Endurance Work Capacity Continuous Heavy Work Prediction of Prolonged Work 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlberg, B., Bergstrom, J., Ekelund, L. G., Hultman, E.: Muscle glycogen and muscle electrolytes during prolonged physical exercise. Acta physiol. scand. 70, 129–142 (1967)Google Scholar
  2. Åstrand, I.: Aerobic work capacity in men and women with special reference to age. Acta physiol. scand. 48, Suppl. 169 (1960)Google Scholar
  3. Åstrand, I.: Degree of strain during building work as related to individual aerobic capacity. Ergonomics 10, 293–303 (1967)Google Scholar
  4. Åstrand, P.-O.: Experimental studies of physical work capacity in relation to sex and age. Copenhagen: Munksgaard 1952Google Scholar
  5. Åstrand, P.-O., Hallback, J., Hadman, R., Saltin, B.: Blood lactates after prolonged severe exercise. J. appl. Physiol. 18, 619–622 (1963)Google Scholar
  6. Åstrand, P.-O., Ryhming, I.: A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. J. appl. Physiol. 7, 218–221 (1954)Google Scholar
  7. Åstrand, P.-O., Saltin, B.: Maximal oxygen uptake and heart rate in various types of muscular activity. J. appl. physiol. 16, 977–981 (1961)Google Scholar
  8. Bergstrom, J., Hermansen, L., Hultman, E., Saltin, B.: Diet, muscle, glycogen and physical performance. Acta physiol. scand. 71, 140–150 (1967)Google Scholar
  9. Bink, B.: The physical working capacity in relation to working time and age. Ergonomics 5, 25–28 (1962)Google Scholar
  10. Bonjer, F. H.: Actual energy expenditure in relation to the physical working capacity. Ergonomics 5, 29–31 (1962)Google Scholar
  11. Bonjer, F. H.: Relationship between physical working capacity and allowable calorie expenditure. In: International Colloquium on Muscular Exercise and Training, Darmstadt (1968)Google Scholar
  12. Buskirk, E. R., Taylor, H. L.: Maximal oxygen intake and its relation to body composition with special reference to chronic physical activity and obesity. J. appl. Physiol. 11, 72–78 (1967)Google Scholar
  13. Costill, D. L.: The relationship between selected physiological variables and distance running performance. J. Sports Med. and Fitness 7, 61–66 (1967)Google Scholar
  14. Costill, D. L.: Physiology of marathon running. J. Amer. med. Ass. 221, 1024–1028 (1972)Google Scholar
  15. Costill, D. L., Branam, G., Eddy, D.: Determinants of marathon running success. Int. Z. angew. Physiol. 29, 249–254 (1971)Google Scholar
  16. Cotes, J. E.: Occupational safety and health series, Report 6, ILO (1966)Google Scholar
  17. Cournand, A., Richards, D. W.: Pulmonary insufficiency. Discussion of a physiological classification and presentation of clinical tests. Amer. Rev. Tuberc. 44, 26–41 (1941)Google Scholar
  18. Freedman, S.: Sustained maximum voluntary ventilation. Resp. Physiol. 8, 230–244 (1970)Google Scholar
  19. Hermannsen, J.: Untersuchungen über die maximale Ventilationsgröße. Z. ges. exp. Med. 90, 130–137 (1933)Google Scholar
  20. Hettinger, Th. U., Rodahl, K.: Ein modifizierter Stufentest zur Messung der Belastungsfähigkeit des Kreislaufs Dtsch. med. Wschr. 14, 553–557 (1960)Google Scholar
  21. Hultman, E.: Physiological role of muscle glycogen in man, with special reference to exercise. Physiology of muscular exercise. Amer. Heart Ass. Monograph No. 15 (1967)Google Scholar
  22. Jones, H. P.: A simple standard exercise test and its use for measuring exertion dyspnoea. Brit. med. J. 12, 65–71 (1952)Google Scholar
  23. Lehman, G., Müller, E. A., Spitzer, H.: Der Kalorienbedarf bei gewerblicher Arbeit. Arbeitsphysiologie 14, 166–235 (1950)Google Scholar
  24. Margaria, R., Aghemo, P., Rovelli, E.: Indirect determination of maximal O2 consumption in man. J. appl. Physiol. 20, 1070–1073 (1965)Google Scholar
  25. Maritz, J. S., Morrison, J. F., Peter, J., Strydom, N. B., Wyndham, C. H.: A practical method of estimating an individual's maximum oxygeni ntake. Ergonomics 4, 97–122 (1961)Google Scholar
  26. Master, E. M., Oppenheimer, E. T.: A simple exercise tolerance test for circulatory efficiency with standard tables for normal individuals. Amer. J. med. Sci. 177, 223 (1929)Google Scholar
  27. McCurdy, J. N., Larson, L. A.: The physiology of exercise. Philadelphia: Lea & Febiger 1939Google Scholar
  28. Michael, E. D., Hutton, K. E., Horvath, S. M.: Cardiorespiratory responses during prolonged exercise. J. appl. Physiol. 16, 997–1000 (1961)Google Scholar
  29. Müller, E. A.: Ein Leistungs-Puls-Index als Maß der Leistungsfähigkeit. Arbeitsphysiologie 14. 271–284 (1950)Google Scholar
  30. Müller, E. A.: Die Messung der körperlichen Leistungsfähigkeit mit einem einzigen Prüfverfahren. Forschungsberichte des Landes Nordrhein-Westfalen, Nr. 1031, Köln-Opladen (1961)Google Scholar
  31. Müller, E. A.: Occupational work capacity. Ergonomics 5, 445–452 (1962)Google Scholar
  32. Müller, E. A.: Methoden zur Diagnose der physischen Leistungsfähigkeit. Arbeitsmedizin 4, 79–83 (1964)Google Scholar
  33. Pruett, E. D. R.: FFA mobilization during and after prolonged severe muscular work in man. J. appl. Physiol. 29, 809–815 (1970)Google Scholar
  34. Robinson, S.: Experimental studies of physical fitness in relation to age. Arbeitsphysiol. 4, 251–323 (1938)Google Scholar
  35. Rohmert, W.: Zur Theorie der Erholungspausen bei dynamischer Arbeit. Int. Z. angew. Physiol. 18, 191–212 (1960)Google Scholar
  36. Rohmert, W.: Untersuchungen über Muskelermüdung und Arbeitsgestaltung. Berlin-Köln-Frankfurt: Beuth-Vertrieb 1962Google Scholar
  37. Rutenfranz, J.: Funktionsdiagnostik des Herz-Kreislaufsystems. Sonderdruck aus: Handbuch der Kinderheilkunde. Berlin-Heidelberg-New York: Springer 1966Google Scholar
  38. Rutenfranz, J., Hettinger, Th.: Untersuchungen über die Abhängigkeit der körperlichen Leistungsfähigkeit von Lebensalter, Geschlecht und körperlicher Entwicklung. Z. Kinderheilk. 83, 65–88 (1959)Google Scholar
  39. Sen Gupta, J., Malhotra, M. S., Ramaswamy, S. S.: Physiological factorsinfluencing work capacity at high altitude. Proc. XXIV Int. Cong. of Physiological Sciences, Washington, D. C., (1968)Google Scholar
  40. Sen Gupta, J., Malhotra, M. S., Ramaswamy, S. S.: Exercise dyspnoea and work performance at sea level and at high altitude. Indian. J. Physiol, Pharmacol. 16, 47–53 (1972)Google Scholar
  41. Shepherd, R. J., Callaway, J.: Principal component analysis of the responses to physical exercise. Ergonomics 9, 141–154 (1966)Google Scholar
  42. Sjostrand, T.: Changes in the respiratory organs of workmen at an ore melting works. Acta med. scand. Suppl. 196 (1947)Google Scholar
  43. Taylor, H. L., Buskirk, E., Hanschel, A.: Maximal oxygen uptake as an objective measure of cardiorespiratory performance. J. appl. Physiol. 8, 73–80 (1955)Google Scholar
  44. Wenzel, H. G.: Über die Ursachen der Begrenzung der körperlichen Dauerleistungsfähigkeit des Menschen. Sonderdruck aus: Schriftenreihe Arbeitsmedizin-So-zialmedizin-Arbeitshygiene, Bd. 29 (1969)Google Scholar
  45. Williams, C. G., Wyndham, C. H., Kok, R., Von Radhen, M. J. E.: Effect of training on maximum oxygen uptake and on anaerobic metabolism in man. Int. Z. angew. Physiol. 24, 113 (1967)Google Scholar
  46. Wyndham, C. H., Williams, C. G., Von Rahden, M.: A physiological basis of the optimum level of energy expenditure. Nature (Lond.) 195, 1210–1212 (1962)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • J. Sen Gupta
    • 1
  • S. S. Verma
    • 1
  • N. T. Joseph
    • 1
  • N. C. Majumdar
    • 1
  1. 1.Defence Institute of Physiology and Allied SciencesNew Delhi

Personalised recommendations