Archives of Microbiology

, Volume 120, Issue 3, pp 263–270 | Cite as

Regulation of ammonium uptake and metabolism by nitrogen fixing bacteria. III. Clostridium pasteurianum

  • D. Kleiner


Addition of ammonium salts to N2 fixing continuous cultures of Clostridium pasteurianum caused immediate stop of nitrogenase synthesis, while the levels of glutamine synthetase, glutamate dehydrogenase and asparagine synthetase remained constant. No evidence for an interconversion of the glutamine synthetase was found. The activities of glutamate synthase in crude extracts were inversely related to the nitrogenase levels. The intracellular glutamine pool rapidly expanded during nitrogenase repression and decreased as fast during derepression while the pool sizes of all other amino acids were not strongly related to the rate of nitrogenase formation. These investigations suggest glutamine as corepressor of nitrogenase synthesis.

Key words

Enzyme regulation Ammonium metabolism Nitrogenase Glutamine synthetase Glutamate synthase Glutamate dehydrogenase Asparagine synthetase Amino acid pools Clostridium pasteurianum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ausubel, F. M., Magolskee, R. F., Maizels, N.: Mutants of Klebsiella pneumoniae in which expression of nitrogenase is independent of glutamine synthetase control. In: Recent developments in nitrogen fixation. (W. Newton, I. R. Postgate, C. Rodriguez-Barrueco, eds.), pp. 347–356. London-New York-San Francisco Academic Press 1977Google Scholar
  2. Bender, R. A., Janssen, K. A., Resnick, A. D., Blumenberg, M., Foor, F., Magasanik, B.: Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J. Bacteriol. 129, 1001–1009 (1977)Google Scholar
  3. Bergersen, F. J., Turner, G. L.: Activity of nitrogenase and glutamine synthetase in relation to availability of oxygen in continuous cultures of a strain of cowpea Rhizobium sp. supplied with excess ammonium. Biochim. Biophys. Acta (Amst.) 538, 406–416 (1978)Google Scholar
  4. Bini, G.: Eine neue Methode zur Identifizierung und Bestimmung der Nitrate in Wässern. Atti R. Accad. Naz. Lincei (Roma) 11, 593–596 (1930); Ref. in Chem. Zentralbl. 101, II, 1111 (1930)Google Scholar
  5. Bishop, P. E., Guevara, J. G., Engelke, J. A., Evans, H. J.: Relation between glutamine synthetase and nitrogenase activities in the symbiotic association between Rhizobium japonicum and Glycine max. Plant Physiol. 57, 542–546 (1976)Google Scholar
  6. Daesch, G., Mortenson, L. E.: Effect of ammonia on the synthesis and function of the N2-fixing system in Clostridium pasteurianum. J. Bacteriol. 110, 103–109 (1972)Google Scholar
  7. Dainty, R. H.: Glutamate biosynthesis in Clostridium pasteurianum and its significance in nitrogen metabolism. Biochem. J. 126, 1055–1056 (1972)Google Scholar
  8. Drozd, J. W., Tubb, R. S., Postgate, J. R.: A chemostat study of the effect of fixed nitrogen sources on nitrogen fixation, membranes and free amino acids in Azotobacter chroococcum. J. Gen. Microbiol. 73, 221–232 (1972)Google Scholar
  9. Gauthier, D., Elmerich, C.: Relationship between glutamine synthetase and nitrogenase in Spirillum lipoferum. FEMS Microbiol. Lett. 2, 101–104 (1977)Google Scholar
  10. Goa, J.: A microbiuret method for protein determination. Scand. J. Clin. Lab. Invest. 5, 218–222 (1953)Google Scholar
  11. Holzer, H., Duntze, W.: Metabolic regulation by chemical modification of enzymes. Ann. Rev. Biochem. 40, 345–374 (1971)Google Scholar
  12. Kleiner, D.: Quantitative relations for the repression of nitrogenase synthesis in Azotobacter vinelandii by ammonia. Arch. Microbiol. 101, 153–159 (1974)Google Scholar
  13. Kleiner, D.: Ammonium uptake by nitrogen fixing bacteria. I. Azotobacter vinelandii. Arch. Microbiol. 104, 163–169 (1975)Google Scholar
  14. Kleiner, D.: Ammonium uptake and metabolism by nitrogen fixing bacteria. II. Klebsiella pneumoniae. Arch. Microbiol. 111, 85–91 (1976)Google Scholar
  15. Kleinschmidt, J. A., Kleiner, D.: The glutamine synthetase from Azotobacter vinelandii: purification characterization, regulation and localization. Eur. J. Biochem. 89, 51–60 (1978)Google Scholar
  16. Ludden, P. W., Burris, R. H.: Activating factor for the iron protein of nitrogenase from Rhodospirillum rubrum. Science (Wash.) 194, 424–425 (1976)Google Scholar
  17. MacGregor, C. H., Schnaitman, C. A., Normansell, D. E.: Purification and properties of nitrate reductase from Escherichia coli K12. J. Biol. Chem. 249, 5321–5327 (1974)Google Scholar
  18. Magasanik, B.: Classical and postclassical modes of regulation of the synthesis of degradative bacterial enzymes. Progr. Nucleic Acid Res. Mol. Biol. 17, 99–115 (1976)Google Scholar
  19. Marier, J. R., Boulet, M.: Direct determination of citric acid in milk with an improved pyridine-acetic anhydride method. J. Dairy Sci. 41, 1683–1692 (1958); Ref. in Anal. Abstr. 6, 3762 (1959)Google Scholar
  20. Meers, J. L., Tempest, D. W., Brown, C. M.: “Glutamine(amide): 2-oxoglutarate amino transferase oxido-reductase (NADP)”, an enzyme involved in the synthesis of glutamate by some bacteria. J. Gen. Microbiol. 64, 187–194 (1970)Google Scholar
  21. Nambiar, P. T. C., Shethna, Y. I.: Effect of NH4+ on acetylene reduction (nitrogenase) in Azotobacter vinelandii and Bacillus polymyxa. J. Indian Inst. Sci. 59, 155–168 (1977)Google Scholar
  22. Neilson, A. H., Doudoroff, M.: Ammonia assimilation in blue-green algae. Arch. Mikrobiol. 89, 15–22 (1973)Google Scholar
  23. Shah, V. K., Davis, L. C., Brill, W. J.: Nitrogenase. I. Repression and derepression of the iron-molybdenum and iron proteins of nitrogenase in Azotobacter vinelandii. Biochim. Biophys. Acta (Amst.) 256, 498–511 (1972)Google Scholar
  24. Shanmugam, K. T., O'Gara, F., Andersen, K., Morandi, C., Valentine, R. C.: Genetic control of nitrogen fixation (nif). In: Recent developments in nitrogen fixation (W. Newton, J. R. Postgate, C. Rodriguez-Barrueco, eds.), pp. 321–330. London-New York-San Francisco: Academic Press 1977Google Scholar
  25. Shanmugam, K. T., Chan, I., Morandi, C.: Regulation of nitrogen fixation. Nitrogenase-derepressed mutants of Klebsiella pneumoniae. Biochim. Biophys. Acta (Amst.) 408, 101–111 (1975)Google Scholar
  26. Stadtman, E. R., Ginsburg, A., Ciardi, J. E., Yeh, J., Hennig, S. B., Shapiro, B. M.: Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylylation and deadenylylation reactions. Adv. Enzyme Reg. 8, 99–118 (1970)Google Scholar
  27. Streicher, S. L., Shanmugam, K. T., Ausubel, F., Morandi, C., Goldberg, R. B.: Regulation of nitrogen fixation in Klebsiella pneumoniae: Evidence for glutamine synthetase as a regulator of nitrogenase synthesis. J. Bacteriol. 120, 815–821 (1974)Google Scholar
  28. Tempest, D. W., Meers, J. L., Brown, C. M.: Influence of environment on the content and composition of microbial free amino acid pools. J. Gen. Microbiol. 64, 171–185 (1970)Google Scholar
  29. Tubb, R. S.: Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature (Lond.) 251, 481–485 (1974)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • D. Kleiner
    • 1
  1. 1.Lehrstuhl Biochemie am Chemischen Laboratorium der UniversitätFreiburg i. Br.Federal Republic of Germany

Personalised recommendations