Skip to main content
Log in

Resting muscle glucose metabolites and related compounds in hypercapnia

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

Glucose metabolites (lactate, pyruvate, citrate, malate), alanine, glutamate and adenosine triphosphate (ATP) were determined in the resting anterior tibial muscle of dogs. The muscle was sampled in anesthetized animals first breathing air, and secondly after an hour of breathing a hypercapnic mixture, FICO2=0.10 (experimental subjects n=6) or air (control subjects n=6). A decrease in concentration of glucose metabolites (lactate: −34%; pyruvate: −24%; Citrate: −34%; malate: −54%), glutamate (−43%), alanine (−35%) and ATP (−8%) was observed in the resting muscle during acute hypercapnic acidosis. This was not the case in control animals breathing air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barclay JK, Boulianne CM, Wilson BA, Tiffin SJ (1979) Interaction of hyperoxia and blood flow during fatigue of canine skeletal muscle in situ. J Appl Physiol: Respirat Environ Exercise Physiol 47:1018–1024

    Google Scholar 

  • Bergmeyer HU, ed (1974) Methods of enzymatic analysis. 2nd English Edition. Verlag Chemie, Academic Press, New York, 4 volumes

    Google Scholar 

  • Ehrsam RE, Heigenhauser GJF, Jones NL (1982) Effect of respiratory acidosis on metabolism in exercise. J Appl Physiol: Respirat Environ Exercise Physiol 53:63–69

    Google Scholar 

  • Fabiato A, Fabiato F (1978) Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. J Physiol (Lond), 276:233–255

    Google Scholar 

  • Folbergrova J, Macmillan V, Siesjo BK (1972a) The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH/NAD ratio of the rat brain. J Neurochem 19:2497–2505

    Google Scholar 

  • Folbergrova J, Macmillan V, Siesjo BK (1972b) The effect of hypercapnic acidosis upon some glycolytic and Krebs cycle-associated intermediates in the rat brain. J Neurochem 19:2507–2517

    Google Scholar 

  • Gimenez M, Florentz M (1979) Effects of hypercapnia on the glycolytic metabolism, enzyme activity and myoglobin of stimulated skeletal muscle in the rat. Bull Eur Physiopathol Resp 15:269–284

    Google Scholar 

  • Graham T, Wilson BA, Sample M, Van Dijk J, Bonen A (1980) The effects of hypercapnia on metabolic responses to progressive exhaustive work. Med Sci Sports Exerc 12:278–284

    Google Scholar 

  • Graham TE, Wilson BA, Sample M, Van Dijk J, Goslin B (1982) The effects of hypercapnia on the metabolic response to steady-state exercise. Med Sci Sports Exerc 14:286–291

    Google Scholar 

  • Hartemann D, Horsky P, Garcia Carmona T, Hannhart B, Saunier C (1976) Intermédiaires de la glycolyse érythrocytaire au cours d'une hypercapnie de trois jours chez le chien. Bull Eur Physiopathol Resp 12:185–197

    Google Scholar 

  • Jacey MJ, Schaefer KE (1972) The effects of chronic hyper-capnia on blood phosphofructokinase activity and the adenine nucleotide system. Respirat Physiol 16:267–272

    Google Scholar 

  • Jennings DB, Meyer M, Stokke T, Piiper J, Scheid P (1982) Blood-gas CO2 equilibration in lungs of unanesthetized dogs during hypercapnia. J Appl Physiol: Respirat Environ Exercise Physiol 52:1177–1180

    Google Scholar 

  • Karetzky MS, Cain SM (1970) Effect of carbon dioxide on oxygen uptake during hyperventilation in normal man. J Appl Physiol 28:8–12

    Google Scholar 

  • Kety SS, Schmidt CF (1948) Effect of altered arterial tensions of CO2 and O2 cerebral blood flow and cerebral O2 consumption of normal young men. J Clin Invest 27:484–492

    Google Scholar 

  • Minakami S, Saito T, Suzuki C, Yoshikawa H (1964) The hydrogen ion concentration and erythrocyte glycolysis. Biochem Biophys Res Comm 17:748–751

    Google Scholar 

  • Murray JF (1959) Oxygen cost of voluntary hyperventilation. J Appl Physiol 14:187–190

    Google Scholar 

  • Pepelko WE, Dixon GA (1974) Elimination of cold-induced nonshivering thermogenesis by hypercapnia. Am J Physiol 227:264–267

    Google Scholar 

  • Rastegar H, Wood M, Harken AH (1979) Respiratory alkalosis increases tissue oxygen demand. J Surg Res 26:687–692

    Google Scholar 

  • Rizzo A, Gimenez M, Horsky P, Saunier C (1976) Influence d'une atmosphère de CO2 à 4% sur le comportement métabolique à l'exercice d'hommes jeunes. Bull Eur Physiopathol Resp 12:209–219

    Google Scholar 

  • Saunier C, Schibi M, Colas T (1965) Hypercapnie aiguË expérimentale chez le chien; variations précoces de l'ion lactate dans le plasma artériel et le liquide céphalo-rachidien. C R Soc Biol 159:2235–2239

    Google Scholar 

  • Schindler U, GÄrtner E, Betz E (1973) Energy-rich metabolites and EEG in hypoxia and in hypercapnia. In: Bicher HI, Bruley DF (eds) Oxygen transport to tissue, Advances in experim Med Biol, vol 37A. Plenum Press, New York, pp 233–238

    Google Scholar 

  • Severinghaus JW (1966) Blood gas calculator. J Appl Physiol 21:1108–1116

    Google Scholar 

  • Somjen G (1967) Effects of anaesthetics on spinal cord of mammals. Anesthesiology 28:135–142

    Google Scholar 

  • Stupfel M (1960) Action du gaz carbonique sur la thermorégulation du rat blanc. I. Effets de de différentes concentrations de CO2 à diverses températures. J Physiol (Paris) 52:575–606

    Google Scholar 

  • Weissman ML, Rubinstein EH, Sonnenschein RR (1976) Vascular response to short-term systemic hypoxia, hypercapnia, and asphyxia in the cat. Am J Physiol 230:595–601

    Google Scholar 

  • Williamson JR, Corkey BE (1969) Assays of intermediates of the citric acid cycle and related compounds by fluoremetric enzyme methods. In: Lowenstein JM (ed) Methods in enzymology, vol XIII. Citric Acid Cycle Acad Press, New York, pp 434–513 (pp 471−473)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saunier, C., Florentz, M. & Hartemann, D. Resting muscle glucose metabolites and related compounds in hypercapnia. Europ. J. Appl. Physiol. 55, 9–13 (1986). https://doi.org/10.1007/BF00422885

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422885

Key words

Navigation