Skip to main content

Two mechanisms of vision in primates

Zusammenfassung

Versuche an „split-brain“ Affen legten die Annahme nahe, daß die Wahrnehmung des Raumes und die Wahrnehmung der Identität von Gegenständen auf anatomisch getrennten Hirnmechanismen beruhen. In der vorliegenden Arbeit werden die Sehmechanismen des Gehirns untersucht, wobei von der Überlegung ausgegangen wird, daß hier zwei parallele Prozesse involviert sind: ein dezentrierter („ambient“), der die Wahrnehmung des den Körper umgebenden Raumes bestimmt, und ein zentrierter („focal“), durch welchen Details kleiner Raumflächen aufgefaßt werden.

Bei Wirbeltieren wird eine detaillierte Topographie des körper-zentrierten Verhaltensraumes vom Auge zum Mittelhirn projiziert. Diese visuelle Topographie ist so mit dem bi-symmetrischen motorischen System integriert, daß sich eine Korrespondenz zwischen gesehenen Punkten und Bewegungszielen ergibt.

Das phylogenetisch jüngere visuelle System des Vorderhirns befaßt sich fast ausschließlich mit dem zentralen Verhaltensraum; die corticale motorische Kontrolle befaßt sich entsprechend mit sehr spezifischen Handlungen im gleichen zentralen Gebiet.

Anatomie und Hirnchirurgie liefern bei Primaten Hinweise auf einen visuellen Mechanismus im Mittelhirn, der für die dezentrierte Raumwahrnehmung eine Rolle spielt. Im Gegensatz dazu greift das auf Fovea, Parafovea und den visuellen Arealen des Cortex beruhende zentrierte Sehen Areale des umgebenden Feldes für eine eingehendere Inspektion heraus. Koordinierte Augenbewegungen sind direkter Ausdruck dieser Aufmerksamkeitszuwendung.

Die Wechselwirkung zweier Mechanismen der visuellen Analyse kennzeichnet das Sehen bei allen aktiven Tieren. Die Komplexität des zentrierten Sehens zeigt sich auf allen Stufen des visuellen Systems von Primaten und in den Teilen des motorischen Systems, welche das Sehen ausrichten und die auf bestimmte visuelle Objekte gerichteten Handlungen steuern.

Summary

Experiments with split-brain monkeys led me to consider that vision of space and vision of object identity may be subserved by anatomically distinct brain mechanisms. In this paper I examine the visual mechanisms of the brain to test the idea that vision involves two parallel processes; one ambient, determining space at large around the body, the other focal which examines detail in small areas of space.

In vertebrates there is a projection from eye to midbrain of a detailed topography of body-centered behavioral space. This visual map is integrated with the bisymmetric motor system to obtain correspondence between visual loci and the goals for movements. The midbrain visual system governs basic vertebrate locomotor behavior.

The phylogenetically more recent forebrain visual system looks almost exclusively at central behavioral space, and cortical motor control is likewise concerned with the formulation of highly specific acts in the same central territory.

Anatomy and brain surgery reveal a midbrain visual mechanism in primates which plays a part in ambient space perception over the whole field. In contrast, focal vision served by the fovea and parafovea and by the cortical visual areas picks out areas in the ambient field for close attention. Conjugate eye movements are the most direct sign of this attention.

The interplay between the two channels of visual analysis is a feature of vision in all active animals; but the complexity of focal vision in primates is revealed in their visual system at all levels, and in the parts of the motor system which orient vision, or which govern acts directed to specific visual objects.

This is a preview of subscription content, access via your institution.

References

  • Ajuriaguerra, J., and H. Hécaen: Le Cortex Cérébral, 2nd edit. Paris: Masson & Cie. 1960.

    Google Scholar 

  • Akert, K.: Experimenteller Beitrag betr. die zentrale Netzhaut-Representation im Tectum Opticum. Schweiz. Arch. Neurol. Psychiat. 64, 1–16 (1949a).

    Google Scholar 

  • —: Der Visuelle Greifreflex. Helv. physiol. Pharmacol. Acta 7, 112–134 (1949b).

    Google Scholar 

  • Apter, J. T.: Projection of the retina on the superior colliculus of cats. J. Neurophysiol. 8, 123–134 (1945).

    Google Scholar 

  • —: Eye movements following stryehninization of the superior colliculus of cats. J.Neurophysiol. 9, 73–86 (1946).

    Google Scholar 

  • Békésy, G. v.: Sensory Inhibition. Princeton: Princeton University Press 1967.

    Google Scholar 

  • Bender, M. B., and S. Shanzer: Oculomotor pathways defined by electric stimulation and lesions in the brainstem of monkey. In: M. B. Bender (ed.), The Oculomotor System, chap. 4, p. 81–140. New York: Harper & Row, Hoeber Medical Division 1964.

    Google Scholar 

  • Bishop, A.: Use of the hand in lower primates. In: J. Buettner-Janusch (ed.), Evolutionary and genetic biology of primates, vol. 2, p. 133–225. New York: Academic Press 1964.

    Google Scholar 

  • Blake, L.: The effect of lesions of the superior colliculus on brightness and pattern discrimination in the cat. J. comp. physiol. Psychol. 52, 272–278 (1959).

    Google Scholar 

  • Boynton, R. M.: In: Visual search techniques. Nat. Acad. Sci.-Nat. Res. Council Publ. No. 712, 232 (1960).

  • Buettner-Janusch, J.: An introduction to the primates. In: J. Buettner-Janusch (ed.), Evolutionary and genetic biology of primates, vol. 1, p. 1–64. New York: Academic Press 1964.

    Google Scholar 

  • Butter, C. M., and W. L. Gekorski: Alterations in pattern equivalence following inferotemporal and lateral striate lesions in rhesus monkeys. J. comp. physiol. Psychol. 61, 309–342 (1966).

    Google Scholar 

  • —, and H. E. Rosvold: Stimulus generalization following inferotemporal and lateral striate lesions in monkeys. In: D. Mostofsky (ed.), Stimulus generalization. Stanford: Stanford University Press 1964.

    Google Scholar 

  • Cowey, A.: Projection of the retina onto striate and prestriate cortex in the squirrel monkey, Saimirl sciureus. J.Neurophysiol. 27, 366–393 (1964).

    Google Scholar 

  • —, and L. Weiskrantz: A comparison of the effects of inferotemporal and striate cortex lesion on the visual behavior of rhesus monkeys. Quart. J. exp. Psychol. 19, 246–253 (1967).

    Google Scholar 

  • Craig, W.: Appetites and aversions as constituents of instinct. Biol. Bull. 84, 91–107 (1918).

    Google Scholar 

  • Daniel, P. M., and D. Whitteridge: The representation of the visual field on the cerebral cortex in monkeys. J. Physiol. (Lond.) 159, 203–221 (1961).

    Google Scholar 

  • Denny-Brown, D.: The midbrain and motor integration. Proc. roy. Soc. Med. 55, 527–538 (1962).

    Google Scholar 

  • —, and R. A. Chambers: Visuo-motor function in the cerebral cortex. J. nerv. ment. Dis. 121, 288–289 (1955).

    Google Scholar 

  • —, and S. Horenstein: The significance of perceptual rivalry resulting from parietal lesions. Brain 75, 433–471 (1952).

    Google Scholar 

  • DeValois, R. L.: Neural processing of visual information. In: R. W. Russell (ed.), Frontiers in physiological psychology, chap. 3, p. 51–91. New York: Academic Press 1966.

    Google Scholar 

  • Doty, R. W.: Functional significance of the topographical aspects of the retinocortical projection. In: R. Jung and H. Kornhuber (eds.), The visual system: Neurophysiology and psychophysics, p. 228–245. Berlin-Göttingen-Heidelberg: Springer 1961.

    Google Scholar 

  • Downer, J. L. de C.: Role of corpus callosum in transfer of training in Macaco, mulatta. Fed. Proc. 17, 37 (1958).

    Google Scholar 

  • —: Changes in visually guided behaviour following midsagittal division of optic chiasm and corpus callosum in monkey (Macaco, mulatta). Brain 82, 251–259 (1959).

    Google Scholar 

  • Fischman, M. W., and T. H. Meikle: Visual intensity discrimination in cats after serial tectal and cortical lesions. J. comp. physiol. Psychol. 59, 193–201 (1965).

    Google Scholar 

  • Gaze, R. M., and M. Jacobson: The projection of the binocular visual field on the optic tecta of the frog. Quart. J. exp. Physiol. 47, 273–280 (1962).

    Google Scholar 

  • Gazzaniga, M. S., J. E. Bogen, and R. W. Sperry: Some functional effects of sectioning the cerebral commissures in man. Proc. nat. Acad. Sci. (Wash.) 48, 1765–1769 (1962).

    Google Scholar 

  • — — —: Cerebral mechanisms involved in ipsilateral eye-hand use in split-brain monkeys. Exp. Neurol. 10, 148–155 (1964).

    Google Scholar 

  • — — —: Observations on visual perception after disconnection of the cerebral hemispheres in man. Brain 88, 221–236 (1965).

    Google Scholar 

  • Gibson, J. J.: The senses considered as perceptual systems. Boston: Houghton Mifflin 1966.

    Google Scholar 

  • Hamilton, C. R., and M. S. Gazzaniga: Lateralization of learning of colour and brightness discriminations following brain bisection. Nature (Lond.) 201, 220 (1964).

    Google Scholar 

  • Harris, A. J.: Eye movements of the dogfish Squalus acanthias L. J. exp. Biol. 43, 107–130 (1964).

    Google Scholar 

  • Hassler, R.: Comparative anatomy of the central visual systems in day- and night-active primates. In: R. Hassler and H. Stephan (eds.), Evolution of the forebrain, p. 419–434. Stuttgart: Georg Thieme 1966.

    Google Scholar 

  • Hécaen, H., and J. Ajuriaguerra: Balint's syndrome and its minor forms. Brain 77, 373–400 (1954).

    Google Scholar 

  • Hess, R. W., S. Burgi, and V. Bucher: Motorische Funktion des Tektal- und Tegmentalgebietes. Mschr. Psychiat. Neurol. 112, l-52 (1946).

    Google Scholar 

  • Humphrey, N. K., and L. Weiskrantz: Vision in monkeys after removal of the striate cortex. Nature (Lond.) 215, 595–597 (1967).

    Google Scholar 

  • Hyde, J. E., and S. G. Eliasson: Brainstem induced eye movements in cats. J. comp. Neurol. 108, 139–172 (1957).

    Google Scholar 

  • Jacobsen, C. F.: Function of frontal association area in primates. Arch. Neurol. Psychiat. (Chic.) 33, 558–569 (1935).

    Google Scholar 

  • —, and T. A. Jackson: An experimental analysis of the functions of the frontal association areas in primates. J. nerv. ment. Dis. 82, 1–14 (1935).

    Google Scholar 

  • Jacobson, M.: The representation of the retina on the optic tectum of the frog. Correlation between retino-tectal magnification factor and retinal ganglion cell count. Quart. J. exp. Physiol. 47, 170–178 (1962).

    Google Scholar 

  • Klüver, H.: Functional significance of the geniculo-striate system. Biol. Symposia 7, 253–299 (1942).

    Google Scholar 

  • Kuypers, H. G. J. M.: Discussion. In: V. B. Mountcastle (ed.), Interhemispheric relations and cerebral dominance, p. 114–115. Baltimore: The Johns Hopkins Press 1962.

    Google Scholar 

  • —, and H. E. Rosvold: Occipito-temporal cortico-cortical connections in the rhesus monkey. Exp. Neurol. 11, 245–261 (1965).

    Google Scholar 

  • Lashley, K. S.: The mechanism of vision: XVIII. Effects of destroying the visual “associative areas” of the monkey. Genet. Psychol. Monogr. 37, 107–166 (1948).

    Google Scholar 

  • Lee-Teng, E., and B. W. Sperry: Intermanual stereognostic size discrimination in split-brain monkeys. J. comp. physiol. Psychol. 62, 84–89 (1966).

    Google Scholar 

  • Lissauer, W.: Ein Fall von Seelenblindheit nebst einen Beitrag zur Theorie derselben. Arch. Psychiat. Nervenkr. 21, 222–270 (1890).

    Google Scholar 

  • Lorenz, K. Z.: Über die Bildung des Instinktbegriffes. Naturwissenschaften 25, 289–300 (1937).

    Google Scholar 

  • Luria, A. R.: Disorders of “simultaneous perception” in a case of bilateral occipital brain injury. Brain 82, 437–449 (1959).

    Google Scholar 

  • —: Higher cortical functions in man. New York: Basic Books, Consultants Bureau 1966.

    Google Scholar 

  • —, and A. L. Yarbus: Disturbances of active visual perception with lesions of the frontal lobes. Cortex 2, 202–212 (1966).

    Google Scholar 

  • Mackworth, N. H.: Visual noise causes tunnel vision. Psychon. Sci. 3, 67–68 (1965).

    Google Scholar 

  • Meikle, T. H.: Failure of interocular transfer of brightness discrimination. Nature (Lond.) 1243–1244 (1964).

  • —, and J. A. Sechzer: Interocular transfer of brightness discrimination in “split brain” cats. Science 132, 734–735 (1960).

    Google Scholar 

  • Mishkin, M.: Visual mechanisms beyond the striate cortex. In: R. W. Russell (ed.), Frontiers in physiological psychology, chap. 4, p. 93–119. New York: Academic Press 1966.

    Google Scholar 

  • —, and K. H. Pribram: Visual discrimination performance following partial ablations of the temporal lobe: I. Ventral vs. lateral. J. comp. physiol. Psychol. 47, 14–20 (1954).

    Google Scholar 

  • — —: Analysis of the effects of frontal lesions in monkey. I. Variations of delayed alternations. J. comp. physiol. Psychol. 48, 492–495 (1955).

    Google Scholar 

  • — —: Analysis of the effects of frontal lesions in monkey: II. Variations of delayed response. J. comp. physiol. Psychol. 49, 36–40 (1956).

    Google Scholar 

  • Myers, R. E.: Function of corpus callosum in interocular transfer. Brain 79, 358–363 (1956).

    Google Scholar 

  • —: Corpus callosum and visual gnosis. In: Brain mechanisms and Learning. A symposium, p. 481–505. Oxford: Blackwell Sci. Publ. 1961.

    Google Scholar 

  • —: Commissural connections between occipital lobes of the monkey. J. comp. Neurol. 118, 1–16 (1962).

    Google Scholar 

  • Napier, J. R.: Studies of the hands of living primates. Proc. zool. Soc. London 134, 647–657 (1960).

    Google Scholar 

  • —: Prehensility and opposability in the hands of primates. In: J. E. Harris (ed.), Vertebrate locomotion, p. 115–132. Symposium No 5. London: Zool. Soc. London 1961.

    Google Scholar 

  • Østerberg, G.: Topography of the layers of rods and cones in the human retina. Acta ophthal. (Kbh.) 65, Suppl., 1–102 (1935).

    Google Scholar 

  • Pasik, P., and T. Pasik: Oculomotor functions in monkeys with lesions of the cerebrum and the superior colliculi. In: M. B. Bender (ed.), The oculomotor system.chap. 3, p. 40–80. New York: Harper & Row, Hoeber Medical Division 1964a.

    Google Scholar 

  • Pasik, T., and P. Pasik: Optokinetic nystagmus: an unlearned response altered by section of chiasma and corpus callosum in monkeys. Nature (Lond.) 203, 609–611 (1964b).

    Google Scholar 

  • —, and M. B. Bender: The superior colliouli and eye movements. Arch. Neurol. (Chic.) 15, 420–436 (1966).

    Google Scholar 

  • Pribram, K. H.: A review of theory in physiological psychology. Ann. Rev. Psychol. 11, 1–40 (1960).

    Google Scholar 

  • —, and M. Mishkin: Analysis of the effects of frontal lesions in monkey: III. Object alternation. J. comp. physiol. Psychol. 49, 41–45 (1956).

    Google Scholar 

  • Rashbass, C.: The relationship between saccadic and smooth tracking eye movements. J. Physiol. (Lond.) 159, 326–338 (1961).

    Google Scholar 

  • Sanders, A. F.: The selective process in the functional visual field. From Inst. for Perception RVO-TNO, Nat. Def. Res. Organization TNO. Soersterberg, Netherlands, 1963.

  • Schwassmann, H. D., and L. Kruger: Organization of the visual projection upon the optic tectum of some fresh water fish. J. comp. Neurol. 124, 113–126 (1965).

    Google Scholar 

  • Siminoff, R., H. D. Schwassmann, and L. Kruger: An electrophysiological study of the visual projection to the superior colliculus of the rat. J. comp. Neurol. 127, 435–444 (1966).

    Google Scholar 

  • Speery, R. W.: Neurology and the mind-brain problem. Amer. Sci. 40, 291–312 (1952).

    Google Scholar 

  • —: Corpus callosum and interhemispheric transfer in the monkey. Macaca mulatta, (abstract). Anat. Rec. 131, 297 (1958).

    Google Scholar 

  • —: Cerebral organization and behavior. Science 133, 1749–1757 (1961).

    Google Scholar 

  • Speague, J. M.: Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science 153, 1544–1547 (1966).

    Google Scholar 

  • —, and T. H. Meikle jr.: The role of the superior colliculus in visually guided behavior. Exp. Neurol. 11, 115–146 (1965).

    Google Scholar 

  • Talbot, S. A., and W. H. Marshall: Physiological studies on neural mechanisms of visual localization and discrimination. Amer. J. Opthal. 24, 1255–1264 (1941).

    Google Scholar 

  • Teuber, H. L., W. S. Battersby, and M. B. Bender: Visual field defects after penetrating missile wounds of the brain. Cambridge: Harvard Univ. Press 1960.

    Google Scholar 

  • Trevarthen, C. B.: Studies on visual learning in split-brain monkeys. Unpublished doctoral dissertation. California Institute of Technology. Pasadena 1962a.

    Google Scholar 

  • —: Double visual learning in split-brain monkeys. Science 136, 258–259 (1962b).

    Google Scholar 

  • —: Processus visuels interhémisphériques localisés dans le tronc cérébral. Leur mise en évidence sur des singes à cerveau dédoublé. C. R. Soe. Biol. (Paris) 157, 2019–2022 (1963).

    Google Scholar 

  • - Functional interactions between the cerebral hemispheres of the split-brain monkey. In: E. G. Ettlinger (ed.), Functions of the Corpus callosum. Ciba Foundation Study Group, No 20, p. 24–40. And discussions, p. 103–106 and p. 144–147. 1965.

  • —: Manipulative strategies of baboons and the origins of cerebral asymmetry. In: M. Kinsbourne (ed.), Hemispheric asymmetry of function. London: Tavistock (1968).

    Google Scholar 

  • Voneida, T. J.: Performance of a visual conditioned response in split-brain cats. Exp. Neurol. 8, 493–504 (1963).

    Google Scholar 

  • Wagman, I. H.: Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In: M. B. Bender (ed.), The oculomotor system, chap. 2, p. 18–39. New York: Harper & Row, Hoeber Medical Division 1964.

    Google Scholar 

  • Walls, G. L.: The vertebrate eye. Michigan: The Cranbrook Inst. of Science 1942.

    Google Scholar 

  • —: The evolutionary history of eye movements. Vision Res. 2, 69–80 (1962).

    Google Scholar 

  • Weiskrantz, L.: Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia 1, 145–164 (1963).

    Google Scholar 

  • Welch, K., and P. Stuteville: Experimental production of unilateral neglect in monkeys. Brain 81, 341–377 (1958).

    Google Scholar 

  • Wertheim, Th.: Über die indirekte Sehschärfe. Z. Psychol. 7, 173–187 (1894).

    Google Scholar 

  • Weymouth, F. W.: Visual sensory units and the minimum angle of resolution. Amer. J. Ophthal. 46, 102–113 (1958).

    Google Scholar 

  • Whitteridge, D.: Area 18 and the vertical meridian of the visual field. In: E. G. Ettlinger (ed.), Functions of the Corpus callosum. Ciba Foundation Study Group, No 20, p. 115–120. London: Churchill 1965.

    Google Scholar 

  • Wilson, W. A., and M. Mishkin: Comparison of the effects of inferotemporal and lateral occipital lesions on visually guided behavior in monkeys. J. comp. physiol. Psychol. 52, 10–17 (1959).

    Google Scholar 

  • Yarbus, A. L.: Eye movements and vision. New York: Plenum Press 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The preparation of this manuscript was supported in part by Grant No. 1 PO1 MH 12623 from the National Institutes of Health to Harvard University, Center for Cognitive Studies, and in part pursuant to a contract, OE 6-10-043, with the United States Department of Health, Education and Welfare, Office of Education, under the provisions of the Cooperative Research Program, while the author was a Research Fellow at the Center.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Trevarthen, C.B. Two mechanisms of vision in primates. Psychol. Forsch. 31, 299–337 (1968). https://doi.org/10.1007/BF00422717

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00422717

Keywords

  • Visual System
  • Motor System
  • Locomotor Behavior
  • Space Perception
  • Visual Locus