Advertisement

Molecular Biology Reports

, Volume 14, Issue 1, pp 17–26 | Cite as

Sequence analysis of the upstream regions of Xenopus laevis β-globin genes and arrangement of repetitive elements within the globin gene clusters

  • Wolfgang Meyerhof
  • Jürg Stalder
  • Manfred Köster
  • Urs Wirthmüller
  • Walter Knöchel
Articles

Abstract

The globin gene clusters of Xenopus laevis are interspersed by various different repetitive DNA elements. A specific repeat, the JH12 element, has been mapped by Southern analysis and some of its locations have been subsequently confirmed by nucleotide sequencing. JH12 family members seem to represent mobile genetic elements and display a high degree of divergence. The nucleotide sequences upstream to the adult βI-globin gene and to the two coordinately expressed larval βI- and βII genes have been determined and compared to those of the adult α-genes. Besides some repetitive DNA elements and a short sequence of rather weak homology we have found no characteristic sequence motifs to be common to the adult α- and β-genes. The two larval β-genes share one short sequence element being absent from the adult genes. This might reflect completely different sequence requirements for protein interactions and for the regulation of adult and larval globin gene expression.

Key words

Xenopus laevis β-globin genes upstream sequences repetitive DNA elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jeffreys AJ, Wilson V, Wood D, Simons JP, Kay RM & Williams JG (1980) Cell 21: 555–564Google Scholar
  2. 2.
    Bisbee CA, Baker MA, Wilson AC, Hadji-Azimi I & Fischberg M, 1977. Science 195: 785–787Google Scholar
  3. 3.
    Knöchel W, Korge E, Basner A & Meyerhof W (1986) J Mol Evol 23: 211–223Google Scholar
  4. 4.
    Hosbach HA, Wyler T & Weber R (1983) Cell 32: 45–53Google Scholar
  5. 5.
    Stalder J, Meyerhof W, Wirthmüller U, Gruber A, Wyler T, Knöchel W & Weber R (1986) J Mol Biol 188: 119–128Google Scholar
  6. 6.
    Banville D & Williams JG (1985) J Mol Biol 184: 611–620Google Scholar
  7. 7.
    Meyerhof W, Korge E & Knöchel W (1987) Rouxs Arch Dev Biol 196: 22–29Google Scholar
  8. 8.
    Denhardt DT (1966) Biochem Biophys Res Commun 23: 641–646Google Scholar
  9. 9.
    Messing J & Vieira J (1982) Gene 19: 269–276Google Scholar
  10. 10.
    Sanger F, Nicklen S & Coulson AR (1977) Proc Natl Acad Sci USA 74: 5463–5467Google Scholar
  11. 11.
    Poncz M, Solowiejczyk D, Ballantine M, Schwartz E & Surrey S (1982) Proc Natl Acad Sci USA 79: 4298–4302Google Scholar
  12. 12.
    Chambers JC, Watanabe S & Taylor JH (1982) Proc Nat Acad Sci USA 79: 5572–5576Google Scholar
  13. 13.
    Tymowska J & Kobel HR (1972) Cytogen 11: 270–278Google Scholar
  14. 14.
    Patient RK, Harris R, Walmsley ME & Williams JG (1983) J Biol Chem 258: 8521–8523Google Scholar
  15. 15.
    Meyerhof W, Klinger-Mitropoulos S, Stalder J, Weber R & Knöchel W (1984). Nucleic Acids Res 12: 7705–7719Google Scholar
  16. 16.
    Meyerhof W, Köster M, Stalder J, Weber R & Knöchel W (1986) Molec Biol Rep 11: 155–161Google Scholar
  17. 17.
    Greaves DR & Patient RK (1985) EMBO J 4: 2617–2626Google Scholar
  18. 18.
    Greaves DR & Patient RK, 1986. Nucleic Acids Res 14: 4147–4158Google Scholar
  19. 19.
    Schubiger JL, Germond JE, ten Heggeler B & Wahli W (1985) J Mol Biol 186: 491–503Google Scholar
  20. 20.
    Spohr G, Reith W & Sures I (1981) J Mol Biol 151: 573–592Google Scholar

Copyright information

© Kluwer Academic Publishers 1990

Authors and Affiliations

  • Wolfgang Meyerhof
    • 1
  • Jürg Stalder
    • 2
  • Manfred Köster
    • 1
  • Urs Wirthmüller
    • 2
  • Walter Knöchel
    • 1
  1. 1.Institut für Molekularbiologie und BiochemieFreie Universität BerlinBerlin 33Germany
  2. 2.Zoologisches Institut, Abteilung für Zell- und EntwicklungsbiologieUniversität BernBernSwitzerland

Personalised recommendations